首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 750 毫秒
1.
Ba0.95Ce0.8Ho0.2O3-a was prepared by high temperature solid-state reaction. X-ray diffraction (XRD) pattern showed that the material was of a single perovskite-type orthorhombic phase. Using the material as solid electrolyte and porous platinum as electrodes, the measurements of ionic transport number and conductivity of Ba0.95Ce0.8Ho0.2O3-a were performed by gas concentration cell and ac impedance spectroscopy methods in the temperature range of 600---1000 ℃in wet hydrogen, dry and wet air respectively. Ionic conduction of the material was investigated and compared with that of BaCe0.8Ho0.2O3-a. The results indicated that Ba0.95Ce0.8Ho0.2O3-a was a pure protonic conductor with the protonic transport number of 1 during 600---700℃ in wet hydrogen, a mixed conductor of protons and electrons with the protonic transport number of 0.97--0.93 in 800---1000 ℃. But BaCe0.8Ho0.2O3-a was almost a pure protonic conductor with the protonic transport number of 1 in 600---900 ℃ and 0.99 at 1000 ℃ in wet hydrogen. In dry air and in the temperature range of 600---1000 ℃, they were both mixed conductors of oxide ions and electronic holes, and the oxide-ionic transport numbers were 0.24--0.33 and 0.17--0.30 respectively. In wet air and in the temperature range of 600---1000 ℃, they were both mixed conductors of protons, oxide ions and electronic holes, the protonic transport numbers were 0.11--0.00 and 0.09--0.01 respectively, and the oxide-ionic transport numbers were 0.41--0.33 and 0.27--0.30 respectively. Protonic conductivity of Ba0.95Ce0.8Ho0.2O3-a in both wet hydrogen and wet air was higher than that of BaCe0.8Ho0.2O3-a in 600--- 800 ℃, but lower in 900--1000 ℃. Oxide-ionic conductivity of the material was higher than that of BaCe0.8Ho0.2O3-a in both dry air and wet air in 600---1000 ℃.  相似文献   

2.
SrCe0.95Er0.05O3-α ceramic of a single orthorhombic phase of perovskite-type SrCeO3 was prepared by high-temperature solid state reaction. Using the ceramic as solid electrolyte and porous platinum as electrodes, the measurements of conductivities and ionic transport numbers on SrCe0.95Er0.05O3-α ceramic were performed by using electrochemical methods in the temperature range of 600~1 000 ℃ in wet hydrogen, dry air and wet air, respectively. The results indicate that the sample is a pure protonic conductor with a maximal conductivity of 0.01 S·cm-1 in wet hydrogen, a mixed conductor of oxide-ion and hole in dry air, and a mixed conductor of proton, oxide-ion and hole in wet air.  相似文献   

3.
Pyrochlore-type rare earth complex oxides of La2-αCaαZr2-βCeβO7-δ were synthesized by the sol-gel method. The structure of the samples was characterized by X-ray diffraction (XRD). The ionic conduction in solid electrolyte of the sintered samples was examined using electrochemical methods at 400~800 ℃. The result indicated that the samples were pyrochlore-type structure, conductivities of the Ca and Ce doped samples were largely increased. Ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in the solid state proton conducting cell reactor. The ammonia evolution rate of doped samples is larger than that of the undoped ones, which indicates that the samples are proton conductor and the ability of protonic conductivity is mainly decided by hole concentration.  相似文献   

4.
A precursor of Ce0.8Y0.2O1.9(YDC) solid electrolyte was synthesized by the gol-gel method. YDC and phosphates powders were prepared by mixing the YDC and phosphates according to different weight ratios. The mixtures of the YDC and binary phosphates were ground and sintered at 1 400 ℃. The proton conductivity in solid electrolyte of the sintered samples was examined using electrochemical methods at 400~800 ℃. Ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in the solid state proton conducting cell reactor. The optimal condition for the ammonia production was determined. The result indicated that composite electrolyte of 80wt% YDC: 20wt% binary phosphates as proton conductor could obtain the highest ionic conductivity and ammonia production rate among the four samples, the rate of evolution of ammonia was up to 9.5 × 10-9 mol·s-1·cm-2.  相似文献   

5.
仇立干  马桂林 《中国化学》2006,24(11):1564-1569
BaxCe0.8Tb0.2O3-a (x=0.98-1.03) solid electrolytes were synthesized and characterized by using X-ray diffraction (XRD). By using AC impedance spectroscopy and gas concentration cell electromotive force (EMF) measurements, the electrical conduction behavior of the specimens was investigated in different gases during 500-1000 ℃ The influence of nonstoichiometry in the specimens with x ≠ 1 on conduction properties was studied and compared with that in the specimen with x = 1. The results show that the specimens are all of perovskite-type orthorhombic structure. In 500-1000 ℃, electronic hole conduction is dominant in dry and wet oxygen, air or nitrogen. Protonic conduction is dominant in wet hydrogen and it is about two orders of magnitude higher than that in hydrogen-free atmospheres (oxygen, air and nitrogen). The electrical conductivity of the same specimen in water vapor-saturated oxygen, air or nitrogen is slightly higher than that in corresponding gas without water vapor. The electrical conductivities of the nonstoichiometric specimens are higher than those of the stoichiometric one.  相似文献   

6.
A series of solid electrolytes (Ce_(0.8)RE_(0.2))_(1-x)M_xO_(2-δ)(RE: Rare earth, M: Alkali earth) were prepared by sol-gel methods. XRD indicated that a pure fluorite phase was formed at 800℃. The synthesis temperature by the sol-gel methods was about 700℃ lower than by the traditional ceramic method. The electrical conductivity and impedance spectra were measured. XPS showed that the oxygen vacancy increased obviously by doping MO, thus, resulting in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte was improved. The effects of RE_2O_3 and MO on the electrical properties were discussed. The conductivity and the oxygen ionic transport number of (Ce_(0.8)Sm_(0.2))_(1-0.05)Ca_(0.05)O_(2(?)δ) is 0.126 S·cm~(-1) and 0.99 at 800℃, respectively.  相似文献   

7.
Ba0.95Ce0.9Y0.1O3-α固体电解质的氧离子导电性   总被引:1,自引:0,他引:1  
Ba0.95Ce0.9Y0.1O3-α solid electrolyte was prepared by high temperature solid state reaction. The electrochemical oxygen permeation (oxygen pumping) rates and oxide ion transport number in this electrolyte were detected in the temperature of 600~1000℃ . It was found that this electrolyte exhibited the oxide ion conduction with the oxide ion transport number of 0.3~0.5.  相似文献   

8.
BaxCe0.8Y0.2O3-α(x=1.03,1,0.98) solid electrolyte samples show a single phase of orthorhombic perovskite of BaCeO3. The oxide-ion conduction and transport number were detected in the temperature of 600~1000℃ by electrochemical oxygen permeation (oxygen pumping), and compared with the results from the oxygen concentration cell. The relation between the ingredient of Ba and oxide-ion conduction was also researched. It was found that these electrolytes exhibited the mixed oxide-ionic and electronic hole conduction under the experimental temperature and oxygen gas. The oxide-ion transport numbers are 0.1~0.6, which are close to the results of the oxygen con-centration cell. They increase as the decrease of Ba content in the samples.  相似文献   

9.
A new oxide ion conductor,La_3GaMo_2O_(12),with a bulk conductivity of 2.7×10~(-2)S·cm~(-1) at 800 ℃ in air at-mosphere was prepared by the traditional solid-state reaction.The room temperature X-ray diffraction data could beindexed on a monoclinic cell with lattice parameters of a=0.5602(2) nm,b=0.3224(1) nm,c=1.5741(1) nm,β=102.555(0)°,V= 0.2775(2) nm~3 and space group Pc(7).Ac impedance measurements in various atmospheres furthersupport that it is an oxide ion conductor.This material was stable in various atmospheres with oxygen partial pres-sure p(O_2)ranging from 1.0×10~5 to 1.0×10~(-7) Pa at 800 ℃.A reversible polymorphic phase transition occurred atelevated temperatures as confirmed by the differential thermal analysis and dilatometric measurement.  相似文献   

10.
Polymeric solid electrolyte system composed of triglycidyl ether of glycerol (TGEG), diglycidyl ether of polyethylene glycol (DGEPEG)and LiClO_4 salt were synthesized. In this" system the electrolyte has a pecularity that not merely can the LiClO_4 provide ionic carriers, but also catalyze the crosslinking reaction without adding an usual curing agent. The effect of salt content and degree of crosslinking on the viscoelasticity and ionic conductivity were studied. Both WLF and VTF equations were used to treat the experimental data in order to elucidate the mechanism of ionic conduction. It was found that the ionic conductivity of the system is carded out through the segmental motion mechanism. However, the data must be treated with care. For example, in evaluating WLF parameters, the contribution concerned with ionic carrier generation with temperature to the conductivity must be differentiated from that concerned with segmental motion. Besides, the temperature range suitable to WLF equation must also be considered. For VTF equation, it might be inapplicable ff the temperature is too low and close to the glass transition temperature of the specimen. Further study is needed in order to have a quantitative information on the limitation of these equations.  相似文献   

11.
采用高温固相反应法制备了非化学计量组成的Ba1.03Ce0.8 Ho0.2O3-α 固体电解质,用XRD和SEM对其相组成和表面及断面形貌进行了表征。用气体浓差电池方法测定了材料在600~1000 ℃温度范围内,干燥空气、湿润空气和湿润氢气气氛中的离子迁移数;用交流阻抗谱技术测定了它们在各实验气氛中的电导率。研究了材料的离子导电特性,并与BaCe0.8Ho0.2O3-α 和Ba0.97Ce0.8Ho0.2O3-α 的性能进行了比较。结果表明:该材料为单相钙钛矿型斜方晶结构。在600~1000 ℃温度范围内、干燥空气中,是氧离子与电子空穴的混合导体,氧离子迁移数为0.10~0.36;在湿润空气中,是质子、氧离子与电子空穴的混合导体,质子迁移数为0.11~0.01,氧离子迁移数为0.34~0.30;在湿润氢气气氛中,是纯质子导体,质子迁移数为1。在600~1000 ℃温度范围内,干燥空气、湿润空气和湿润氢气气氛中,非化学计量组成材料(x = 1.03,0.97)的电导率高于化学计量组成材料(x = 1)的电导率,其中,Ba1.03Ce0.8 Ho0.2O3-α的电导率最高 (1000 ℃时、在干燥空气气氛中:3.92×10-2 S·cm-1;在湿润空气气氛中:3.46×10-2 S·cm-1;在湿润氢气气氛中:2.10×10-2 S·cm-1)。Ba1.03Ce0.8 Ho0.2O3-α材料的离子导电性优于BaCe0.8Ho0.2O3-α 和Ba0.97Ce0.8Ho0.2O3-α。  相似文献   

12.
BaCe0.7Zr0.2Nd0.1O3?α ceramic was prepared by solid state reaction. Phase composition, surface and fracture morphologies of the material were characterized by using XRD and SEM, respectively. Chemical stability against carbon dioxide and water steam at the high temperature was tested. The conductivity and ionic transport number of the material were measured by ac impedance spectroscopy and gas concentration cell methods in the temperature range of 500–900°C in wet hydrogen and wet air, respectively. Using the ceramic as solid electrolyte and porous platinum as electrodes, the hydrogen‐air fuel cell was constructed, and the cell performance at the temperature from 500 to 900°C was examined. The results indicate that BaCe0.7Zr0.2Nd0.1O3?α was a single phase perovskite‐type orthorhombic system, with high density and good chemical stability in carbon dioxide and water steam atmospheres at the high temperature. The conductivity of the material in wet hydrogen and wet air was increased as the temperature rises. In wet hydrogen, the material was a pure protonic conductor with the protonic transport number of 1 from 500 to 600°C, a mixed conductor of proton and electron with the protonic transport number of 0.973–0.955 from 700 to 900°C. In wet air, the material was a mixed conductor of proton, oxide ion and electron hole. The protonic transport numbers were 0.002–0.003, and the oxide ionic transport numbers were 0.124–0.179. The fuel cell could work stably. At 900°C, the maximum short‐circuit current density and power output density were 156 mA·cm?2 and 40 mW·cm?2, respectively.  相似文献   

13.
Ba1.03Ce0.8Tm0.2O3?α ceramic with orthorhombic perovskite structure was prepared by conventional solid‐state reaction. The conductivity and ionic transport number of Ba1.03Ce0.8Tm0.2O3?α were measured by ac impedance spectroscopy and gas concentration cell methods in the temperature range of 500–900°C in wet hydrogen and wet air. Using the ceramic as solid electrolyte and porous platinum as electrodes, the hydrogen‐air fuel cell was constructed, and the cell performance was examined at 500–900°C. The results indicate that the specimen is a pure ionic conductor with the ionic transport number of 1 at 500–900°C in wet hydrogen. In wet air, the specimen is a mixed conductor of proton, oxide ion and electron hole. The protonic transport numbers are 0.071–0.018, and the oxide ionic transport numbers are 0.273–0.365. The conductivities of Ba1.03Ce0.8Tm0.2O3?α under wet hydrogen, wet air or fuel cell atmosphere are higher than those of Ba1.03Ce0.8RE0.2O3?α (RE?Y, Eu, Ho) reported previously by us. The fuel cell can work stably. At 900°C, the maximum power output density is 122.7 mW·cm?2, which is higher than that of our previous cell using Ba1.03Ce0.8RE0.2O3?α (RE?Y, Eu, Ho) as electrolyte.  相似文献   

14.
The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high tem-perature solid-state reaction and its single phase character was confirmed by X-ray diffrac-tion. The conduction property of the sample was investigated by alternating current impedance spectroscopy and gas concentration cell methods under different gases atmo-spheres in the temperature range of 500-900 oC. The performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured. In wet hydrogen, the sample is a pure protonic conductor with the protonic transport number of 1 in the range of 500-600 oC, a mixed conductor of proton and electron with the protonic transport number of 0.945-0.933 above 600 oC. In wet air, the sample is a mixed conductor of proton, oxide ion, and elec-tronic hole. The protonic transport numbers are 0.010-0.021, and the oxide ionic transport numbers are 0.471-0.382. In hydrogen-air fuel cell, the sample is a mixed conductor of proton, oxide ion and electron, the ionic transport numbers are 0.942-0.885. The fuel cell using Ba0.98Ce0.8Tm0.2O3-α as solid electrolyte can work stably. At 900 oC, the maximum power output density is 110.2 mW/cm2, which is higher than that of our previous cell using Ba0.98Ce0.8Tm0.2O3-α (x≤1, RE=Y, Eu, Ho) as solid electrolyte.  相似文献   

15.
用高温固相反应法制备了质子导电性陶瓷Ba0.9Sr0.1Ce0.9Nd0.1O3-α。用粉末X-射线衍射(XRD)和扫描电子显微镜(SEM)对该陶瓷材料进行了表征;用交流阻抗谱技术和气体浓差电池方法研究了材料在500~900℃温度范围内、不同气体气氛中的离子导电性,并与BaCe0.9Nd0.1O3-α和Ba0.9Ca0.1Ce0.9Nd0.1O3-α材料的导电性进行了比较。结果表明,该陶瓷材料为单一钙钛矿型BaCeO3斜方晶结构,具有良好的致密性,在高温下、CO2或水蒸气气氛中具有较高的稳定性。在湿润氢气气氛中、500~800℃温度范围内,材料的质子迁移数为1,是一个纯的质子导体;在900℃下,质子迁移数为0.964,是一个质子与电子的混合导体,质子迁移数高于BaCe0.9Nd0.1O3-α(在700~900℃温度范围内,质子迁移数为0.95)。在湿润空气气氛中,材料的质子迁移数为0.019~0.032,氧离子迁移数为0.093~0.209,是一个质子、氧离子和电子空穴的混合导体,总电导率高于Ba0.9Ca0.1Ce0.9Nd0.1O3-α。在氢-空气燃料电池条件下,材料的离子迁移数为0.957~0.903,是一个质子、氧离子和电子的混合导体,离子电导率高于Ba0.9Ca0.1Ce0.9Nd0.1O3-α。  相似文献   

16.
Ba0.97Ce0.8Ho0.2O3-α陶瓷的离子导电性及其燃料电池性能   总被引:1,自引:0,他引:1  
The perovskite-type-oxide solid solution Ba0.97Ce0.8Ho0.2O3-α was prepared by high temperature solidstate reaction and its single-phase character was confirmed by X-ray diffraction. The ionic conduction of the sample was investigated using electrical methods at elevated temperatures, and the performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured, which were compared with those of BaCe0.8Ho0.2O3 - α. In wet hydrogen, BaCe0.8 Ho0.2 O3 - α almost exhibits pure protonic conduction at 600-1000 ℃, and its protonic transport number is 1 at 600-900 ℃ and 0.99 at 1000 ℃. Similarly,Ba0.97Ce0.8Ho0.2O3-α exhibits pure protonic conduction with the protonic transport number of 1 at 600-700 ℃, but its protonic conduction is slightly lower than that of BaCe0.8Ho0.2O3-α, and the protonic transport number are 0.99-0.96 at 800-1000 ℃. In wet air, the two samples both show low protonic and oxide ionic conduction. For Ba0.97Ce0.8Ho0.2O3-α, the protonic and oxide ionic transport numbers are 0.01-0.11 and 0.30-0.31 respectively, and for BaCe0.8Ho0.2O3-α, 0.01-0.09 and 0.27-0.33 respectively. Ionic conductivities of Ba0.97Ce0.8Ho0.2O3-α are higher than those of BaCe0.8Ho0.2O3-α under wet hydrogen and wet air. The performance of the fuel cell using Ba0.97Ce0.8Ho0.2O3-α as solid electrolyte is better than that of BaCe0.8Ho0.2O3-α. At 1000 ℃, its maximum short-circuit current density and power output density are 465 mA/cm2 and 112 mW/cm2, respectively.  相似文献   

17.
Indium Tungstate, In2(WO4)3 – an In3+ Conducting Solid Electrolyte Polycrystalline In2(WO4)3 has been electrochemically characterized and unambiguously identified as an In3+ conducting solid electrolyte. By heating, indium tungstate undergoes a phase transition between 250 °C and 260 °C transforming from a monoclinic to an orthorhombic phase for which the conduction properties have been determined. The adopted crystal structure in this high temperature region corresponds to the Sc2(WO4)3 type structure. The electrical conductivity was investigated by impedance spectroscopy in the temperature range 300–700 °C and amounts to about 3.7 · 10–5 Scm–1 at 600 °C with a corresponding activation energy of 59.5 kJ/mol. Polarization measurements indicated an exclusive current transport by ionic charge carriers with a transference number of about 0.99. In dc electrolysis experiments, the trivalent In3+ cations were undoubtedly identified as mobile species. A current transport by oxide anions was not observed.  相似文献   

18.
Conductivity of perovskite phosphate–substituted solid solutions of Ba4Ca2Nb2 x P x O11 (0.0 ≤ x ≤ 0.5) was studied as a function of temperature, partial pressure of oxygen and water vapors. It is proved that the studied systems are protonic conductors at the temperatures below 600°C in the atmosphere with elevated content of water vapors (pH2O = 1.92 × 10–2 atm). Introduction of the tetrahedral [PO4] group in the complex oxide matrix of Ba4Ca2Nb2O11 results in an increase in the oxygen–ionic (dry air, pH2O = 1.91 × 10–4 atm) and protonic conductivities (wet air, pH2O = 1.92 × 10–2 atm). Is it found that the doping causes a considerable increase in chemical stability of phases with respect to carbon dioxide.  相似文献   

19.
王茂元  仇立干  左玉香 《化学学报》2009,67(12):1349-1354
以高温固相反应法合成了BaCe0.5Zr0.4La0.1O3-α陶瓷. 粉末XRD结果表明, 该陶瓷材料为单一钙钛矿型BaCeO3斜方晶结构, 在高温下、CO2或水蒸气气氛中具有较高的稳定性. 以陶瓷材料为固体电解质、多孔性铂为电极, 用交流阻抗谱技术测定了材料在500~900 ℃下, 不同气体气氛中的电导率; 用气体浓差电池方法测定了材料在干燥空气、湿润空气和湿润氢气气氛中的离子迁移数, 研究了材料的离子导电特性. 结果表明, 在500~900 ℃下, 干燥或湿润的气体气氛中, 随着温度升高和氧分压增大, 材料的电导率均增大. 在干燥空气中, 陶瓷材料的氧离子迁移数为0.685~0.147, 是一个氧离子与电子空穴的混合导体. 在湿润空气中, 陶瓷材料的质子迁移数为0.001~0.006, 氧离子迁移数为0.618~0.164, 是一个质子、氧离子和电子空穴的混合导体. 在湿润氢气中, 500~700 ℃温度范围内, 陶瓷材料的质子迁移数为1, 是一个纯的质子导体; 而在800~900 ℃温度范围内, 陶瓷材料的质子迁移数为0.957~0.954, 是一个质子与电子的混合导体, 质子电导占主导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号