首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the potential of MOF (Mil-101-Cr)-coated Fe3O4 magnetic nanoparticles (Fe3O4-MOF MNPs) for asphaltene adsorption was investigated for the first time and the results were compared with magnetic Fe3O4 nanoparticles (Fe3O4 MNPs). The coprecipitation method was used for the synthesis of both nanoparticles and were verified using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM). The initial asphaltene concentration, nanoparticles concentration, and temperature were the investigated parameters that influenced the adsorption capacity. Increasing the asphaltene concentration, decreasing the mass of nanoparticles, and reducing the temperature could enhance the maximum asphaltene adsorption capacities of 0.79 for Fe3O4 MNPs and 0.98?mg?m?2 for Fe3O4-MOF MNPs. Adsorption isotherms tests showed that the Langmuir model was in agreement with the experimental data. In addition, the evaluation of adsorption kinetics demonstrated that the pseudo-second-order Lagergren model predicted the results more precisely. The amount of asphaltene adsorption for Fe3O4-MOF MNPs was higher than that for Fe3O4 MNPs. These results recommend the application of MOF as an appropriate and effective coating for enhancing asphaltene adsorption.  相似文献   

2.
The present study was conducted to evaluate the performance of magnetic Fe3O4 nanoparticles coated with polythiophene (PT), Mil-101 (Cr) (MOF), graphene oxide (GO), SiO2, and chitosan for adsorption of asphaltene from crude oil in a bench scale setup. All nanoparticles were synthesized using co-precipitation method. The characteristics of nanoparticles were verified using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and field emission scanning electron microscope (FESEM) analyses. The concentration of nanoparticles was kept constant at the optimum value of 10g?L?1. The amount of asphaltene adsorption was determined at different contact times of 0.5, 0.75, 1, 2, and 4 hours. The results showed that the adsorption increased with contact time and reached equilibrium after about 2 hours in both continuous and batch experiments. The amount of asphaltene adsorption was lower in continuous experiments compared to batch experiments. However, it was found that magnetic nanoparticles are applicable for inhibition of asphaltene precipitation under flow conditions. Furthermore, polythiophene coating on magnetic Fe3O4 nanoparticles had the highest capacity for asphaltene adsorption. Besides, by applying a magnetic field, the magnetic nanoparticles that adsorbed asphaltene can be separated from crude oil to prevent asphaltene aggregation and precipitation.  相似文献   

3.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF 8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF 8。在对Fe3O4@PAA@ZIF 8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示 Fe3O4@PAA@ZIF 8 具有明显的三层结构,Fe3O4的平均粒径为 117nm,PAA 层厚度约为 17 nm,ZIF 8层的厚度约为 14 nm。Fe3O4@PAA@ZIF 8对 MG 的吸附量随着 pH 的升高而增大,吸附过程符合准二阶动力学模型和 Langmuir等温吸附模型。此外,Fe3O4@PAA@ZIF 8还表现出良好的重复利用性能,8次循环利用后对MG(500 mg·L-1)的最大吸附量仍可达982 mg·g-1。  相似文献   

4.
Cui YR  Hong C  Zhou YL  Li Y  Gao XM  Zhang XX 《Talanta》2011,85(3):1246-1252
Orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles were synthesized for cell separation. The Fe3O4@Au magnetic nanoparticles were synthesized by reducing HAuCl4 on the surfaces of Fe3O4 nanoparticles, which were further characterized in detail by TEM, XRD and UV-vis spectra. Anti-CD3 monoclonal antibody was orientedly bioconjugated to the surface of Fe3O4@Au nanoparticles through affinity binding between the Fc portion of the antibody and protein A that covalently immobilized on the nanoparticles. The oriented immobilization method was performed to compare its efficiency for cell separation with the non-oriented one, in which the antibody was directly immobilized onto the carboxylated nanoparticle surface. Results showed that the orientedly bioconjugated Fe3O4@Au MNPs successfully pulled down CD3+ T cells from the whole splenocytes with high efficiency of up to 98.4%, showing a more effective cell-capture nanostructure than that obtained by non-oriented strategy. This developed strategy for the synthesis and oriented bioconjugation of Fe3O4@Au MNPs provides an efficient tool for cell separation, and may be further applied to various fields of bioanalytical chemistry for diagnosis, affinity extraction and biosensor.  相似文献   

5.
In this research, magnetic Fe3O4 nanoparticles were synthesised by co-precipitation method and modified with polythiophene (PT) to produce Fe3O4-PT nanoparticles for preconcentration and determination of cadmium (??) ion followed by electrothermal atomic absorption spectrometry. The results of FT-IR spectroscopy, EDX analysis and SEM images show that Fe3O4-PT nanoparticles were synthesised successfully. Different parameters such as sample pH, amounts of adsorbent, sample volume, extraction time, type and concentration of eluent and desorption time were completely investigated and optimum conditions were selected.

Under the optimum conditions, the calibration curve was linear in the range of 0.01–0.25 µg L?1 of cadmium (??). The relative standard deviation was 4.7% (n = 7, 0.10 µg L?1 Cd2+) and limit of detection was 3.30 ng L?1. The accuracy of the proposed method was verified by the analysis of a certified reference material and spike method. Finally, the proposed method was applied for the determination of ultra-trace levels of cadmium (??) in different water and food samples.  相似文献   

6.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF-8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF-8。在对Fe3O4@PAA@ZIF-8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示Fe3O4@PAA@ZIF-8具有明显的三层结构,Fe3O4的平均粒径为117nm,PAA层厚度约为17 nm,ZIF-8层的厚度约为14 nm。Fe3O4@PAA@ZIF-8对MG的吸附量随着p H的升高而增大,吸附过程符合准二阶动力学模型和Langmuir等温吸附模...  相似文献   

7.
The adsorption of Saccharomyces cerevisiae mandelated dehydrogenase (SCMD) protein on the surface-modified magnetic nanoparticles coated with chitosan was studied in a batch adsorption system. Functionalization of surface-modified magnetic particles was performed by the covalent binding of chitosan onto the surface of magnetic Fe3O4 nanoparticles. Characterization of these particles was carried out using FTIR spectra, transmission electron micrography (TEM), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). Magnetic measurement revealed that the magnetic Fe3O4–chitosan nanoparticles were superparamagnetic and the saturation magnetization was about 37.3 emu g−1. The adsorption capacities and rates of SCMD protein onto the magnetic Fe3O4–chitosan nanoparticles were evaluated. The adsorption capacity was influenced by pH, and it reached a maximum value around pH 8.0. The adsorption capacity increased with the increase in temperature. The adsorption isothermal data could be well interpreted by the Freundlich isotherm model. The kinetic experimental data properly correlated with the first-order kinetic model, which indicated that the reaction is the adsorption control step. The apparent adsorption activation energy was 27.62 kJ mol−1 and the first-order constant for SCMD protein was 0.01254 min−1 at 293 K.  相似文献   

8.
以有机碱四甲基氢氧化铵(TMAH)为沉淀剂合成了纳米Fe3O4和Co2+掺杂的纳米Fe3O4粒子。分别讨论了碱用量,铁盐溶液浓度,反应温度,有机碱及PEG-4000的分散性等因素对纳米Fe3O4的形貌影响。结果表明,所合成的纳米Fe3O4为30nm左右的反尖晶石型面心立方结构,有机碱除了起沉淀剂作用,还能够提高纳米Fe3O4的分散性。本文还讨论了不同Co2+掺入量的纳米Fe3O4粒子的磁性质,结果表明Co2+掺杂的纳米Fe3O4粒子的矫顽力在不同掺入量的下有较大的改变。当Co2+掺入量为10.0%时,纳米Fe3O4的矫顽力达到最大值,为1628Oe。  相似文献   

9.
The carbon coated Fe3O4 nanoparticles (Fe3O4/C) were synthesized by a simple hydrothermal reaction and applied as solid-phase extraction (SPE) sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. The Fe3O4/C sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large surface area of nanoparticles, and only 50 mg of sorbents are required to extract PAHs from 1000 mL water samples. The adsorption attains equilibrium rapidly and analytes are eluted with acetonitrile readily. Salinity and solution pH have no obvious effect on the recoveries of PAHs, which avoids fussy adjustment to water sample before extraction. Under optimized conditions, the detection limits of PAHs are in the range of 0.2–0.6 ng L−1. The accuracy of the method was evaluated by the recoveries of spiked samples. Good recoveries (76–110%) with low relative standard deviations from 0.8% to 9.7% are achieved. This new SPE method provides several advantages, such as high extraction efficiency, high breakthrough volumes, convenient extraction procedure, and short analysis times. To our knowledge, this is the first time that Fe3O4/C nanoparticles are used for the pretreatment of environmental water samples.  相似文献   

10.
Drilling fluid is a vital element and is often regarded as the “blood” in the oil industry. Although traditional oil-based drilling fluids have advantages in some harsh cases, the high cost and environmental pollution faced with them limit its application. Water-based drilling fluids (WBDFs) with environmental friendly, low cost, and high performance are important for drilling engineering to solve the problems of low efficiency and wellbore instability caused by poor rheological properties and large filtration loss in drilling operations. In this paper, Fe3O4 nanoparticles modified by poly (acrylic acid) (PAA) through 3-(trimethoxysilyl) proryl methacrylate (TMSPMA) were introduced into WBDFs for enhancing their rheological and plugging performance. Rheological tests indicated that the consistency coefficient (K) of the Fe3O4/PAA nanoparticles/WBDFs decreased at a higher concentration. Incorporated nanoparticles with a concentration of 0.05?wt %, the WBDFs will exhibit good shear-thinning behavior. The results showed that the best performance for Fe3O4/PAA nanoparticles being as a filtration additive in WBDFs was achieved at concentration as low as 0.1?wt %. These results demonstrated that Fe3O4/PAA nanoparticles are effective additives for WBDFs.  相似文献   

11.
A Cu(II) complex supported on Fe3O4@SiO2 core–shell magnetic nanoparticles (MNPs) was prepared and characterized by FT-IR, XRD, SEM, EDX, TEM, VSM, TGA, and AAS analysis. The load of Cu on picolinimidoamide ligand anchored on Fe3O4@SiO2 core–shell MNPs was determined as 1.22, 1.54, and 1.70 wt% using AAS, EDX and TGA analyses, respectively. Synthesized Cu(II) complex on Fe3O4@SiO2 MNPs efficiently catalyzed a click reaction between alkyl halides, alkynes, and sodium azide to synthesize corresponding triazoles in high to excellent yields. The catalyst was recovered using an external magnetic field, and recycled for subsequent reactions without substantial loss of efficiency.  相似文献   

12.
Gao Y  Wang G  Huang H  Hu J  Shah SM  Su X 《Talanta》2011,85(2):1075-1080
In this paper, we utilized the instinct peroxidase-like property of Fe3O4 magnetic nanoparticles (MNPs) to establish a new fluorometric method for determination of hydrogen peroxide and glucose. In the presence of Fe3O4 MNPs as peroxidase mimetic catalyst, H2O2 was decomposed into radical that could quench the fluorescence of CdTe QDs more efficiently and rapidly. Then the oxidization of glucose by glucose oxidase was coupled with the fluorescence quenching of CdTe QDs by H2O2 producer with Fe3O4 MNPs catalyst, which can be used to detect glucose. Under the optimal reaction conditions, a linear correlation was established between fluorescence intensity ratio I0/I and concentration of H2O2 from 1.8 × 10−7 to 9 × 10−4 mol/L with a detection limit of 1.8 × 10−8 mol/L. And a linear correlation was established between fluorescence intensity ratio I0/I and concentration of glucose from 1.6 × 10−6 to 1.6 × 10−4 mol/L with a detection limit of 1.0 × 10−6 mol/L. The proposed method was applied to the determination of glucose in human serum samples with satisfactory results.  相似文献   

13.
用改进的Hummers法制备了氧化石墨烯,用乙二胺、乙二胺与丁二胺/己二胺混溶来改性氧化石墨烯。用水热法制备了Fe3O4,并用物理混合法制备了GO/Fe3O4/有机胺的三元复合体系。用透射电镜、扫描电镜、红外光谱、热重分析、X射线衍射、VSM和XPS等对所制得的样品进行了结构表征和性能测试,研究了三元复合粒子对结晶紫染料的吸附性能及影响结晶紫染料吸附效果的因素。结果表明:所制备的Fe3O4的平均粒径约为200 nm,粒径分布均匀;复合物中GO为典型的片状结构,GO及有机胺的掺杂没有影响Fe3O4的尖晶石结构;复合物为超顺磁性,Ms为53.0 emu·g~(-1)。吸附结果表明:石墨烯/Fe3O4/有机胺的三元复合材料对结晶紫染料的最大吸附量随浓度增大而增大,而吸附结晶紫染料的移除率却随结晶紫染料浓度增大而减小,并趋向一定值;乙二胺和己二胺混溶比例为5∶1的GO/Fe3O4复合材料吸附性能最佳:结晶紫浓度为400 mg·L~(-1),最大吸附量为164.3 mg·L~(-1)。  相似文献   

14.
柠檬酸根对纳米Fe3O4颗粒的生长及性能的影响   总被引:19,自引:0,他引:19  
现代诊断学的发展使得超小超顺磁性的Fe3O4粒子在医学领域具有重要应用价值。实验中利用某些羧酸盐对铁氧化物晶粒成长的抑制作用,在共沉淀法中引入柠檬酸根,制备出平均粒径小于5 nm的Fe3O4纳米分散体系。研究了不同柠檬酸根浓度对生成粒子的大小、结晶和表面吸附情况的影响。对Fe3O4颗粒在不同条件下的磁性与胶体稳定性进行了讨论。  相似文献   

15.
In this work, a novel Fe3O4/graphene oxide (GO) hybrid was prepared and its removal ability of cationic methylene blue dye from water was investigated. To improve the dispersability of Fe3O4/GO hybrid in water, GO was first modified by polyethylene glycol (PEG) via a click approach before deposition of Fe3O4 nanoparticles onto its surface. The successful modification of GO surface and the deposition of Fe3O4 nanoparticles were confirmed by transmission electron microscopy directly. The saturation magnetization of the resultant Fe3O4/GO hybrid is 7.8 eum/g. The adsorption capacities of Fe3O4/GO hybrid for methylene blue at 35 and 60°C were as high as 96.05 and 120.05 mg/g, respectively. Moreover, the Langmuir, Freundlich, and Temkin models are used to investigate the isothermal adsorption behavior of Fe3O4/GO hybrid.  相似文献   

16.
Li K  Lai Y  Zhang W  Jin L 《Talanta》2011,84(3):607-613
A Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor was developed for the amperometric detection of Escherichia coli (E. coli). Magnetic Fe2O3@Au nanoparticles were prepared by reducing HAuCl4 on the surfaces of Fe2O3 nanoparticles. This DNA biosensor is based on a sandwich detection strategy, which involves capture probe immobilized on magnetic nanoparticles (MNPs), target and reporter probe labeled with horseradish peroxidase (HRP). Once magnetic field was added, these sandwich complexes were magnetically separated and HRP confined at the surfaces of MNPs could catalyze the enzyme substrate and generate electrochemical signals. The biosensor could detect the concentrations upper than 0.01 pM DNA target and upper than 500 cfu/mL of E. coli without any nucleic acid amplification steps. The detection limit could be lowered to 5 cfu/mL of E. coli after 4.0 h of incubation.  相似文献   

17.
Fe3O4@SiO2@polymer复合粒子的制备及在药物控制释放中的应用   总被引:1,自引:1,他引:0  
本文通过多步反应制备了一种新型的、多层结构的、多功能的磁性纳米复合粒子, (Fe3O4@SiO2@polymer). 纳米复合粒子内核是磁性Fe3O4纳米粒子, SiO2包裹在Fe3O4上能够使其稳定分散和保护其不被腐蚀氧化; 中间层是生物相容的聚天冬氨酸(PAsp)载药层; 最外层是亲水的聚乙二醇(PEG)稳定层. 磁性纳米复合粒子各层都是生物相容的, 利用静电作用将抗癌药物阿霉素(DOX)负载在磁性纳米复合粒子中, 通过PAsp的pH响应调节了DOX的释放速率.  相似文献   

18.
A novel core-shell magnetic Prussian blue-coated Fe3O4 composites (Fe3O4@PB) were designed and synthesized by in-situ replication and controlled etching of iron oxide (Fe3O4) to eliminate Cd (II) from micro-polluted water. The core-shell structure was confirmed by TEM, and the composites were characterized by XRD and FTIR. The pore diameter distribution from BET measurement revealed the micropore-dominated structure of Fe3O4@PB. The effects of adsorbents dosage, pH, and co-existing ions were investigated. Batch results revealed that the Cd (II) adsorption was very fast initially and reached equilibrium after 4 h. A pH of 6 was favorable for Cd (II) adsorption on Fe3O4@PB. The adsorption rate reached 98.78% at an initial Cd (II) concentration of 100 μg/L. The adsorption kinetics indicated that the pseudo-first-order and Elovich models could best describe the Cd (II) adsorption onto Fe3O4@PB, indicating that the sorption of Cd (II) ions on the binding sites of Fe3O4@PB was the main rate-limiting step of adsorption. The adsorption isotherm well fitted the Freundlich model with a maximum capacity of 9.25 mg·g−1 of Cd (II). The adsorption of Cd (II) on the Fe3O4@PB was affected by co-existing ions, including Cu (II), Ni (II), and Zn (II), due to the competitive effect of the co-adsorption of Cd (II) with other co-existing ions.  相似文献   

19.
β−cyclodextrins (β−CD)-based inclusion complexes of CoFe2O4 magnetic nanoparticles (MNPs) were prepared and used as catalysts for chemiluminescence (CL) system using the luminol-hydrogen peroxide CL reaction as a model. The as-prepared inclusion complexes were characterized by XRD (X-ray diffraction), TGA (thermal gravimetric analysis) and FT-IR. The oxidation reaction between luminol and hydrogen peroxide in basic media initiated CL. The effect of β−CD-based inclusion complexes of CoFe2O4 magnetic nanoparticles and naked CoFe2O4 magnetic nanoparticles on the luminol-hydrogen peroxide CL system was investigated. It was found that inclusion complexes between β−CD and CoFe2O4 magnetic nanoparticles could greatly enhance the CL of the luminol-hydrogen peroxide system. Investigation on the kinetic curves and the chemiluminescence spectra of the luminol-hydrogen peroxide system demonstrates that addition of CoFe2O4 MNPs or inclusion complexes between β−CD and CoFe2O4 MNPs does not produce a new luminophor of the chemiluminescent reaction. The luminophor for the CL system was still the excited-state 3-aminophthalate anions (3-APA*). The enhanced CL signals were thus ascribed to the possible catalysis from CoFe2O4 MNPs or inclusion complexes between β−CD and CoFe2O4 nanoparticles. The feasibility of employing the proposed system for hydrogen peroxide sensing was also investigated. Experimental results showed that the CL emission intensity was linear with hydrogen peroxide concentration in the range of 1.0 × 10−7 to 4.0 × 10−6 mol L−1 with a detection limit of 2.0 × 10−8 mol L−1 under optimized conditions. The proposed method has been used to determine hydrogen peroxide in water samples successfully.  相似文献   

20.
Magnetically recoverable and environmentally friendly Cu‐based heterogeneous catalyst has been synthesized for the one‐pot conversion of aldehydes to their corresponding primary amides. The Fe3O4@SiO2 nanocomposites were prepared by synthesis of Fe3O4 magnetic nanoparticles (MNPs) which was then coated with a silica shell via Stöber method. Bi‐functional cysteine amino acid was covalently bonded onto the siliceous shell of nanocatalyst. The CuII ions were then loaded onto the modified surface of nanocatalyst. Finally, uniformly dispersed copper nanoparticles were achieved by reduction of CuII ions with NaBH4. Amidation reaction of aryl halides with electron‐withdrawing or electron‐donating groups and hydroxylamine hydrochloride catalyzed with Fe3O4@SiO2@Cysteine‐copper (FSC‐Cu) MNPs in aqueous condition gave an excellent yield of products. The FSC‐Cu MNPs could be easily isolated from the reaction mixture with an external magnet and reused at least 8 times without significant loss in activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号