首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用高分辨率瞬时激光光谱技术,研究了H2(1,1)与CO2碰撞中的能量转移。受激拉曼泵浦把H2(0,1)激发到H2(1,1)能级,H2(1,1)与CO2碰撞,使CO2的振转态得到布居,通过泛频吸收得到CO2(0000)和(0001)的转动态分布,测量H2(0,1)和H2(1,1)的CARS(相干反斯托克斯拉曼散射)谱,得到这二个能级布居数密度之比,而H2(0,1)密度通过在池温300K下H2(v=0)的转动Boltzmann分布得到。碰撞转移速率系数由一个速率方程得到,对于CO2(0000)J=48~76,速率系数ktr从(3.9±0.8)×10-11单调递增到(1.4±0.3)×10-10 cm3·molecule-1·s-1,而对于(0001)J=5~33,速率系数均在(4.3±0.9)×10-12cm3·molecule-1·s-1附近。随H2(1,1)的激发,在0.5μs内测量CO2(0000)和(0001)原生态的转动布居,得到玻尔兹曼转动温度Trot,对于(0000)态,有Trot=1 100K,对于(0001)态有Trot=310K,与池温接近。利用泛频吸收线的多普勒增宽测量,得到CO2各转动态的实验室平移温度Ttran和质心平移温度Trel,对于(0000)J=48和76,Trel分别为454和1 532K,平动能平均变化在231~1 848cm-1之间,而对于(0001)J=5~33,平均平动能基本无变化。  相似文献   

2.
激发态Na2与H2碰撞,使H2(v=3,J=3)得到布居,在H2和He总气压为800Pa及温度为700K的条件下,利用相干反斯托克斯拉曼散射(CARS)光谱技术研究了H2(3,3)与H2(He)间转动能量转移过程。改变CARS激光束与激发Na2的激光之间的延迟时间,测量He不同摩尔配比时H2(3,J)态CARS谱强度的时间演化,得到H2(3,3)的总弛豫速率系数分别为=(21±5)×10-13cm3s-1和=(5.6±1.6)×10-13cm3s-1。测量H2(3,J)各转动态的相对CARS谱强度,由速率方程分析,得到H2(3,3)+H2→H2(3,J)+H2中,对于J=2,4,转移速率系数分别为11±4和8.2±3.1cm3s-1。在H2(3,3)+He→H2(3,J)+He中,对于J=2,4,转移速率系数分别为3.1±1.2和2.1±0.7cm3s-1。对于H2(3,3),单量子弛豫׀∆J׀=1约占该态总弛豫率的90%。  相似文献   

3.
光学-光学双共振激发NaK至61Σ+高位电子态,研究了NaK(61Σ+)与H2的电子-振转能量转移.利用相干反斯托克斯拉曼散射(CARS)光谱技术检测H2的振转态分布.扫描CARS谱表明H2在(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)和(3,5)振转能级上有布居.对于(3,1),(3,2),(3,3)和(3,5)能级,扫描CARS谱峰值直接给出布居数之比.对于(1,1),(2,1),(2,2)和(2,3)能级,扫描CARS谱峰值给出二个可能的布居数之比,利用一个速率方程组,由时间分辨CARS轮廓可以得到真实的比值.用n1~n8分别表示H2的(3,1),(2,1),(1,1),(3,3),(2,3),(2,2),(3,2)和(3,5)能级上布居密度,得到n2/n1~n8/n1分别为0.51,0.97,0.45,0.18,0.10,0.26和0.31.利用Stern-Volmer公式,得到61Σ+态的总退布速率系数为(2.1±0.4)×10-10 cm3 s-1,由H2各振转能级布居数之比,得到61Σ+-(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)和(3,5)转移速率系数(10-11 cm3·S-1单位)分别为5.4±1.6,2.8±0.8,0.6±0.2,1.0±0.3,5.6±1.7,1.4±0.4,2.5±0.8和1.7±0.5.  相似文献   

4.
利用相干反斯托克斯拉曼光谱(CARS)探测技术,研究了K2的 (V=46-61)与H2间的电子-振转动能级的碰撞转移,扫描CARS谱确认了仅在H2的V=2,J=0,1,2及V=1,J=2能级上有布居,用n1,n2,n3,n4,分别表示(2,0) ,(2,1) ,(2,2) ,(1,2)上的粒子数密度,从CARS谱峰值得到n1/n4,n2/n4,n3/n4 分别为3.3±0.5,2.2±0.3,2.0±0.3,有88%粒子处在V=2能级上,而在V=1能级上有12%。转移能配置到振动,转动,平动的比例分别为0.53,0.01,0.46,能量主要分配在振动和平动上,在573K和5×103 Pa条件下,通过求解速率方程组和对时间分辨CARS线强度分析得到碰撞转移速率系数k12=(3.3±0.7) ×10-14 cm3s-1和k2=(1.4±0.3)×10-14cm3s-1。  相似文献   

5.
利用相干反斯托克斯拉曼光谱(CARS)探测技术,研究了K2的 (V=46-61)与H2间的电子-振转动能级的碰撞转移,扫描CARS谱确认了仅在H2的V=2,J=0,1,2及V=1,J=2能级上有布居,用n1,n2,n3,n4,分别表示(2,0) ,(2,1) ,(2,2) ,(1,2)上的粒子数密度,从CARS谱峰值得到n1/n4,n2/n4,n3/n4 分别为3.3±0.5,2.2±0.3,2.0±0.3,有88%粒子处在V=2能级上,而在V=1能级上有12%。转移能配置到振动,转动,平动的比例分别为0.53,0.01,0.46,能量主要分配在振动和平动上,在573K和5×103 Pa条件下,通过求解速率方程组和对时间分辨CARS线强度分析得到碰撞转移速率系数k12=(3.3±0.7) ×10-14 cm3s-1和k2=(1.4±0.3)×10-14cm3s-1。  相似文献   

6.
光学-光学双共振激发K2到91∑+g高位态,研究了K2(91∑+g)与H2的电子-振转碰撞能量转移。利用相干反斯托克斯(CARS)光谱技术探测H2的振转态分布,扫描CARS谱表明H2在(1,1)、(2,1)、(2,2)、(3,1)、(3,2)、(3,3)和(3,5)能级上有布居。由时间分辨CARS轮廓得到H2各振转能级上粒子数之比,得到H2的平均振动能和平均转动能分别为9063cm-1和388cm-1。从91∑+g→11∑+u、11∑+u→11∑+g、33∏g→13∑+u跃迁的时间分辨激光感应荧光(LIF)强度得到它们的自发辐射率和碰撞转移率。在H2压强为3×103Pa时,K2(91∑+g)与H2的碰撞转移能为16930cm-1。H2的平均振转能占平均转移能的56%。  相似文献   

7.
利用相干反斯托克斯拉曼光谱(coherent anti-stokes Raman spectroscopy,CARS)探测技术,研究了激发态Rb2与H<,2>间的电子-振转能级的碰撞转移.扫描CARS谱确认了H<,2>分子仅在v=1,J=1,2及v=2,J=0,1,2能级上有布居,用n1,n2,n3,n4,n5分别表示...  相似文献   

8.
利用受激拉曼泵浦激发HBr分子至Χ~1Σ~+(1,12)激发态,由相干反斯托克斯-拉曼散射(CARS)光谱确定分子的激发.通过测量CARS谱相对强度,得到了HBr分子Χ~1Σ~+态(1,12)能级的布居数密度为n_1=0.54×10~(13) cm~(-3).在一次碰撞条件下,测量碰撞前后CO_2(00~00,J)态的激光感应荧光强度比,得到CO_2转动态的双指数分布.由二分量指数拟合得到T_a=261 K的低能分布和T_b=978 K的高能分布.结果表明,碰撞后约有65%的分子处于低J态,属于弹性或近弹性的弱碰撞;约有35%的分子处于高J态,属于非弹性的强碰撞.在振动-转动平动(V-RT)能量转移过程中,CO_2(00~00,J)态的总出现速率系数为(1.3±0.3)×10~(-10) cm~3 molecule~(-1)s~(-1);低转动态的平均倒空速率系数为(2.9±0.8)×10~(-10) cm~3 molecule~(-1)s~(-1).总的出现速率系数比平均倒空速率系数小,但在量级上保持一致.对CO_2 J=60-74高转动态,随着J值的增加,质心平移温度和质心平移能的平均改变增加.对低转动态,在碰撞过程中,J态既可能出现也可能被倒空,平移能的改变不易确定.  相似文献   

9.
激发态Cs2和H2的电子-振转能级的碰撞转移   总被引:1,自引:1,他引:0  
利用相干反斯托克斯拉曼光谱(CARS)探测技术, 研究了激发态Cs2与H2间的电子-振转能级的碰撞转移。用波长为532 nm和中心波长为716 nm的两束激光同时聚焦到样品池中, 扫描CARS谱确认了H2分子的S支(△v =1, △J=2)仅在v=1, J=4,5及v=2, J=3,4能级上有布居, 用n1、n2、n3、n4分别表示(2,4)、(2,3)、(1,4)及(1,5)上的粒子数密度。从CARS线的峰值得到n2/n1、n3/n1、n4/n1分别为6.34±1.27、3.66±0.73和1.45±0.29。转移能配置到振动、转动和平动的比例分别为0.44、0.06和0.50, 能量主要分配在振动和平动上。在T=523 K和PH2=2.5×103 Pa条件下, 通过求解速率方程组和对时间分辨CARS线轮廓的分析, 得到碰撞转移速率系数k1=(6.0±1.2)×10-14 cm-3s-1和k2=(4.0±0.8)×10-13cm-3 s-1。  相似文献   

10.
K(5P)与H2反应生成KH(v″=0-3)振动态,测量了各振动态的转动分布,转动玻尔兹曼温度为455K,而振动温度为1604K,这个接近池温的转动温度和很高的振动温度是共线碰撞机制的有力证据.利用高分辨率瞬时吸收技术得到各振动能级上转动态的布居分布,从而得到反应碰撞转移速率系数,对于v″=0、1、2、3,分别为(3.45±0.86)×10-13、(1.35±0.34)×10-13、(6.28±1.57)×10-14和(2.35±0.59)×10-14cm3s-1.同时研究了K(5P)-H2的电子-振动能量转移,利用相干反斯托克斯拉曼散射(CARS)探测H2的振动态分布.扫描CARS谱发现v=1、2、3上有布居.由CARS峰值得到H2(0,1)、(1,1)、(2,1)、(3,1)和(3,3)布居之比.H2(0,1)布居由450K的转动分布得到,因而得到(1,1)、(2,1)、(3,1)和(3,3)态的布居,从而获得K(5P)-H2(1,1)、(2,1)、(3,1)和(3,3)的电子-振转速率系数分别是(1.1±0.3)×10-13、(9.3±2.5)×10-14、(4.2±1.1)×10-14和(3.8±1.0)×10-14cm3s-1.  相似文献   

11.
在Cs-H2混合系统中用激光将Cs原子激发到6P3/2能级,研究了CsH分子的形成机制.利用光学吸收法得到6P3/2态的密度及其空间分布,能量合并过程6P3/2+6P3/2→6D+6S1/2产生6D态原子;猝灭过程Cs(6P3/2)+H2(v=0)→Cs(6S1/2)+H2(v=2)产生H2(v=2)态.由6P3/2态原子密度及6D→6P3/2与6P3/2→6S1/2的荧光比得到碰撞能量合并速率系数,在不同的H2密度下,测量了转移荧光强度I895,得到了H2(2,J)态的产生速率系数kH2(2,J)=1.  相似文献   

12.
K(5P)与H2反应生成KH(v′′=0-3)振动态,测量了各振动态的转动分布,转动玻尔兹曼温度为455K,而振动温度为1604K,这个接近池温的转动温度和很高的振动温度是共线碰撞机制的有力证据.利用高分辨率瞬时吸收技术得到各振动能级上转动态的布居分布,从而得到反应碰撞转移速率系数,对于v′′=0、1、2、3,分布别为(3.45±0.86)×10-13、(1.35±0.34)×10-13、(6.28±1.57)×10-14和(2.35±0.59)×10-14cm3s-1. 同时研究了K(5P)-H2的电子-振动能量转移,利用相干反斯托克斯拉曼散射(CARS)探测H2的振动态分布.扫描CARS谱发现v=1、2、3上有布居. 由CARS峰值得到H2(0,1)、(1,1)、(2,1)、(3,1)和(3,3)布居之比. H2(0,1)布居由450K的转动分布得到,因而得到(1,1)、(2,1)、(3,1)和(3,3)态的布居,从而获得K(5P)-H2(1,1)、(2,1)、(3,1)和(3,3)的电子-振转速率系数分别是(1.1±0.3)×10-13、(9.3±2.5)×10-14、(4.2±1.1)×10-14和(3.8±1.0)×10-14cm3s-1.  相似文献   

13.
光学-光学双共振激发NaK至61Σ+高位电子态,研究了NaK(61Σ+)与H2的电子-振转能量转移。利用相干反斯托克斯拉曼散射(CARS)光谱技术检测H2的振转态分布。扫描CARS谱表明H2在(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)和(3,5)振转能级上有布居。对于(3,1), (3,2), (3,3)和(3,5)能级,扫描CARS谱峰值直接给出布居数之比。对于(1,1), (2,1), (2,2)和(2,3)能级,扫描CARS谱峰值给出二个可能的布居数之比,利用一个速率方程组,由时间分辨CARS轮廓可以得到真实的比值。用n1n8分别表示H2的(3,1), (2,1), (1,1), (3,3), (2,3), (2,2), (3,2)和(3,5)能级上布居密度,得到n2/n1n8/n1分别为0.51,0.97,0.45,0.18,0.10,0.26和0.31。利用Stern-Volmer公式,得到61Σ+态的总退布速率系数为(2.1±0.4)×10-10 cm3s-1, 由H2各振转能级布居数之比,得到61Σ+-(1,1), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)和(3,5)转移速率系数(10-11 cm3·s-1单位)分别为5.4±1.6,2.8±0.8,0.6±0.2,1.0±0.3,5.6±1.7,1.4±0.4,2.5±0.8和1.7±0.5。  相似文献   

14.
摘要:利用受激拉曼泵浦激发HBr分子至Χ1Σ+(1,12)激发态,由相干反斯托克斯-拉曼散射(CARS)光谱确定分子的激发。通过测量CARS谱相对强度,得到了HBr分子Χ1Σ+态(1,12)能级的布居数密度为n1=0.54×1013cm-3。在一次碰撞条件下,测量碰撞前后CO2(0000,J)态的激光感应荧光强度比,得到CO2转动态的双指数分布。由二分量指数拟合得到Ta=261K的低能分布和Tb=978K的高能分布。结果表明,碰撞后约有65%的分子处于低J态,属于弹性或近弹性的弱碰撞;约有35%的分子处于高J态,属于非弹性的强碰撞。在振动-转动平动(V-RT)能量转移过程中,CO2(0000,J)态的总出现速率系数为(1.3±0.3)× 10-10 cm3 molecule-1s-1;低转动态的平均倒空速率系数为(2.9±0.8)×10-10cm3molecule-1s-1。总的出现速率系数比平均倒空速率系数小,但在量级上保持一致。对CO2 J =60-74高转动态,随着J值的增加,质心平移温度和质心平移能的平均改变增加。对低转动态,在碰撞过程中,J态既可能出现也可能被倒空,平移能的改变不易确定。  相似文献   

15.
受激发射泵浦(SEP)激发Na2(X1Σ+g)的(v=33~51,J=11)高位振动态,利用激光诱导荧光(LIF)光谱研究了Na2(X)高位振动态分别与Ar和H2的碰撞能量转移过程。SEP布居的高位态粒子的衰减曲线是一纯指数函数,由此得到总碰撞转移速率系数,它们随振动能级的增加而线性增加。测量从νp=48,Jp=11转移到(47,J)态上布居的LIF光强的相对强度,得到相对转移速率系数,再由总转移速率系数得到态—态转移的绝对速率系数。对于Na2(ν)+Ar,多量子弛豫没有观察到。对于Na(ν=48)+H2,由泵浦得到的高位态ν=48上的布居的相当大的部分直接弛豫到较低能级ν=43(Δν=-5),所用的弛豫时间比位于ν=48和43中间的态之间的碰撞时间还要短,故相继单量子弛豫的机制可消除。对于ν=48,至少有占其布居数的40%的粒子经历了多量子振动弛豫过程,对这种过程的可能机制进行了讨论。  相似文献   

16.
采用单电子的双中心原子轨道强耦合方法,计算了H(1s)+H(2s)碰撞体系H(2s)失去电子过程的总截面,并与前人的实验结果进行了比较.研究表明,采用双中心原子轨道强耦合方法得到的H(1s)+H(2s)体系H(2s)失去电子过程的截面与实验比较符合.同时,还给出了H(1s)+H(2s)碰撞体系H(2s)电离过程、H(1s)俘获电子过程和H(2s)退激发到H(1s)过程的理论截面.  相似文献   

17.
利用泵浦-检测方法,在样品池条件下,研究了Cs(6D5/2)与H2反应碰撞传能过程.利用激光感应荧光(LIF)光谱技术,确定了CsH[X1∑+(v,J)]振转能级上的布居分布,转动态分布与热统计分布基本一致.Cs激发态原子密度由激光能量吸收得到.记录A1∑+(v',J+1)→X1∑+(v,J)的时间分辨荧光,从荧光强度的对数值给出的直线斜率确定(v',J+1)→(v,J)的自然辐射率,结合(v,J)→(v',J+1)吸收系数的测量,得到反应生成物CsH[x1∑+(v,J)]态的分子密度.由速率方程分析,给出反应截面σ(v,J),对J求和,得到σ(v)[10-16 cm2单位]分别为(0.64士0.19)(v=0)和(0.58士0.17)(v=1).  相似文献   

18.
基于一个最新的CH2(X-3A″)势能面,运用切比雪夫波包方法对初始态为(v=0,j=0)的C(3P)+H2(X1∑g^+)→H(2S)+CH(2Π)反应体系在1.0-2.0 eV的碰撞能量范围内进行了动力学研究.通过对角动量量子数J=60以下的所有分波进行计算,得到了反应几率、积分散射截面和速率常数.计算中用到了耦合态近似方法和考虑科里奥利耦合效应的精确量子方法.通过对比发现,随着角动量量子数以及能量的增加,科里奥利耦合效应的影响越发显著,因而对于该反应体系,科里奥利耦合效应不可忽略.本文计算所得的积分散射截面和速率常数尚无实验数据可以比较,对该反应的后续研究有一定的参考价值.  相似文献   

19.
利用受激拉曼泵浦将H2激发到v=1,J=3态,研究了H2(1, 3)态与Cs2分子碰撞(1, 3)态的弛豫及Cs2(X1+g)振动态的激发过程。利用相干反斯托克斯拉曼散射(CARS)检测H2的振转态分布,由CARS峰值得到密度比[H2(1, 3)]/[H2(0, 3)]和[H2(1, 1)]/[H2(1, 3)],由H2(v=0)振转态的Boltzmann分布确定H2(0, 3)的密度,由此得到[H2(1, 3)]和[H2(1, 1)]态的密度。激光诱导荧光光谱(LIF)确定被碰撞激发的Cs2(X1+g, v=11-15)各态。利用单模半导体激光作瞬时光吸收,对于v= 11, 12, 13, 14和15,积分吸收系数(单位:106cm-1s-1)分别是6.5,7.9,7.0,6.1和4.7,结合H2(1, 3)的密度,得到H2(1, 3)Cs2(X1+g, v)的转移速率系数,对于v=11-15,分别是(单位:10-13cm-1s-1)1. 40. 6,1.70. 7,1.50. 6,1.30.5和1.00. 4。利用吸收线Doppler增宽测量分别得到了Cs2(X1+g, v=11-15)的平动能。  相似文献   

20.
利用受激拉曼泵浦将H2激发到v=1,J=3态,研究了H2(1, 3)态与Cs2分子碰撞(1, 3)态的弛豫及Cs2(X1+g)振动态的激发过程。利用相干反斯托克斯拉曼散射(CARS)检测H2的振转态分布,由CARS峰值得到密度比[H2(1, 3)]/[H2(0, 3)]和[H2(1, 1)]/[H2(1, 3)],由H2(v=0)振转态的Boltzmann分布确定H2(0, 3)的密度,由此得到[H2(1, 3)]和[H2(1, 1)]态的密度。激光诱导荧光光谱(LIF)确定被碰撞激发的Cs2(X1+g, v=11-15)各态。利用单模半导体激光作瞬时光吸收,对于v= 11, 12, 13, 14和15,积分吸收系数(单位:106cm-1s-1)分别是6.5,7.9,7.0,6.1和4.7,结合H2(1, 3)的密度,得到H2(1, 3)Cs2(X1+g, v)的转移速率系数,对于v=11-15,分别是(单位:10-13cm-1s-1)1. 40. 6,1.70. 7,1.50. 6,1.30.5和1.00. 4。利用吸收线Doppler增宽测量分别得到了Cs2(X1+g, v=11-15)的平动能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号