首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
针对氢燃料电池对宽温域质子交换膜材料的迫切应用需求,合成了新型含Tr?ger’s base (TB)结构的聚苯并咪唑(TB-PBI-N),并以之为填料与含TB基聚酰亚胺(PI-TB-N)共混,制备了5种不同比例的磷酸掺杂复合质子交换膜.通过傅里叶红外光谱(FTIR)、核磁氢谱(1H-NMR)、热失重分析(TGA)和拉伸试验等表征了质子交换膜的结构、机械性能、热及氧化稳定性、酸吸收、溶胀度、质子电导率(σ)及氢/空燃料单电池的功率密度(PD),探究了TB-PBI-N填料的添加对复合膜性能的影响.结果表明:磷酸掺杂前复合膜的拉伸强度为87.3~129.5 MPa,掺杂后膜的拉伸强度为3.7~9.5 MPa,磷酸吸收率为235.3%~288.7%,溶胀率为13.9%~25.0%,可在30~160℃传导质子,σ和PD最高分别可达94.3 mS/cm和334.6 mW/cm2. TBPBI-N填料的添加改善了复合膜的机械性能及磷酸掺杂膜的尺寸稳定性.另外,填料TB-PBI-N的TB结构具有额外的碱基位点,可提供一定的酸吸附能力,从而提升了σ.其中,复合...  相似文献   

2.
采用磁控溅射法在聚四氟乙烯(PTFE)微孔膜表面溅射CeO_2,制备了CeO_2/PTFE复合膜.利用接触角、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和拉伸强度等对复合膜的亲水性、元素组成、形貌和机械强度进行测试,研究了溅射时间和溅射功率对膜性能的影响.结果表明,在溅射功率为40 W,溅射时间为120 s时,CeO_2/PTFE复合膜亲水性和拉伸强度都相对较好.在CeO_2/PTFE复合膜上浇铸Nafion树脂,制备的CeO_2/PTFE/Nafion复合膜含水率达到30%,离子电导率达到0.071 S/cm.  相似文献   

3.
将两种不同EW值的聚α,β,β_三氟苯乙烯(sPTFS)树脂浸入到多孔聚四氟乙烯(PTFE)膜的孔中,制成sPTFS/PTFE复合膜用于质子交换膜燃料电池(PEMFC).并对该复合膜的吸水率,电导率,机械强度及其装配的电池性能进行了测试.与其它均质膜相比,复合膜明显降低了吸水率,同时也降低了电导率,增加了机械强度.在电池温度为80℃,H2/O2压力为0.2/0.2MPa条件下,两种复合膜装配电池的性能优于Nofion 115膜.低EW值的复合膜电池性能优于高EW值的电池性能,但电池稳定性相对较差.  相似文献   

4.
自交联聚乙烯亚胺-聚砜高温质子交换膜研究   总被引:1,自引:0,他引:1  
为了制备出兼具高电导率和优异力学性能的高温质子交换膜,本工作采用化学自交联的方法将含氮功能基团聚乙烯亚胺(PEI,平均分子量200)接枝到氯甲基化聚砜(CMPSF)高分子链上制备磷酸掺杂型高温质子交换膜的基膜(PEI-PSF).其中,PEI上的含氮功能基团既作为磷酸吸附位点,使高温质子交换膜获得高的质子传导率,同时又作为交联位点与CMPSF高分子链上的苄氯基团发生自交联反应,使聚合物膜具有优良的力学性能.傅里叶变换红外光谱和X-射线光电子能谱测试结果表明,CMPSF高分子链上的苄氯基团与PEI上的含氮功能基团发生完全反应,且随着聚砜氯甲基化程度的增加,膜中引入的PEI含量相应增加,进而提升了PEI-PSF膜的磷酸掺杂水平.氯甲基化程度为58%的PEI-PSF膜(PEI-PSF-58)磷酸吸附量达到122 wt%,在180℃无水条件下质子电导率达到3.4×10-2 S·cm-1,同时该复合膜拉伸强度达到30 MPa.基于磷酸掺杂的PEI-PSF-58复合膜的高温质子交换膜燃料电池在150℃干气条件下的输出峰功率达到200 mW·cm-2,并且在78 h的测试时间内展示出了良好的稳定性.  相似文献   

5.
DMFCs用磺化聚醚醚酮/功能化二氧化硅复合质子交换膜   总被引:1,自引:0,他引:1  
在磺化度(DS)为55.1%的磺化聚醚醚酮(SPEEK)中掺杂功能化二氧化硅(吸湿性SiO2溶胶及带有磺酸基团的二氧化硅(SiOx-S)粒子)制备SPEEK/SiO2和SPEEK/SiOx-S复合质子交换膜.SiO2和SiOx-S的掺杂能有效提高复合膜的抗溶胀、阻醇性能及高温低湿情况下的电导率.纯SPEEK膜在80℃溶胀为52.6%,而SiO2和SiOx-S掺杂量为15%的复合膜在此温度下分别仅有26.2%和27.3%的溶胀.在室温至80℃范围内,SPEEK/SiO2(20 wt%)和SPEEK/SiOx-S(20 wt%)复合膜的甲醇透过系数比Nafion115膜小近2个数量级.在120℃、相对湿度(RH)为40%情况下,SPEEK纯膜的电导率仅为2.6×10-4S.cm-1,SPEEK/SiO2(20 wt%)复合膜约为2.0×10-3S.cm-1,而SPEEK/SiOx-S(20 wt%)复合膜高达1.0×10-2S.cm-1,与Nafion115相当.SPEEK/SiO2(20 wt%)和SPEEK/SiOx-S(20 wt%)2种复合膜的尺寸稳定性较高,膜电极无催化剂与膜分离现象,其DMFCs单电池性能好于SPEEK膜.  相似文献   

6.
制备了基于磷钨酸(PWA)与磺化杂萘联苯聚醚酮(SPPEK)的无机-有机复合质子交换膜, 红外光谱测试结果表明, 复合膜中PWA通过端氧和桥氧共同与SPPEK发生作用; 由SEM照片看出, 对磺化度为58%的SPPEK, PWA掺杂量为20%和40%时杂多酸的分散良好, 掺杂量为60%时膜内出现颗粒聚集; PWA在水中的溶出性测试发现, 用水处理4天, 各复合膜中PWA的溶出率均低于10%; PWA/SPPEK膜具有良好的质子导电性, PWA掺杂量高于40%、磺化度为58%的SPPEK为基质的复合膜在100 ℃以上的电导率接近甚至超过Nafion115膜的电导率, 复合膜的电导率和水含量均随PWA掺杂量的增加而增加; 随着PWA掺杂量的增加复合膜的阻醇性能下降, 但除PWA掺杂量60%、SPPEK磺化度58%的复合膜外, 所制备的多种复合膜的甲醇透过系数均低于Nafion115膜.  相似文献   

7.
以1,4-双(二苯基膦)丁烷为交联剂,以具有四甲基联苯结构的聚芳醚酮为基体材料,分别制备了刚性三苯基膦和柔性三丁基膦修饰的阴离子交联膜材料.交联剂在交联结构形成的过程中转变成季膦盐,在提高膜材料机械稳定性的同时保持离子交换功能基团的含量.研究了2种阴离子交换膜的尺寸稳定性、电导率、机械性能及耐碱稳定性等.研究结果表明,当交联度为20%时,三苯基膦与三丁基膦修饰的阴离子交换膜的拉伸强度分别由未交联时的27和18 MPa提高到45和30 MPa;交联的膜材料在60℃的3 mol/L KOH溶液中浸泡120 h后,三苯基膦修饰的阴离子交换膜的电导率保留率为81%,三丁基膦修饰的阴离子交换膜的电导率保留率为69%,膜的耐碱稳定性均较未交联时有明显提高.交联度相同时,三苯基膦修饰的阴离子交换膜表现出更高的拉伸强度和更好的耐碱稳定性.  相似文献   

8.
在锐钛型钛溶胶颗粒或粉体TiO2存在下,进行端乙烯基硅油与含氢硅油的原位硅氢加成反应,制得聚硅氧烷/TiO2复合膜,实现TiO2在立体交联膜中的分散及与聚硅氧烷基体的有效复合.通过红外分析、电镜观察、拉伸实验和紫外-可见光透过测试,对聚硅氧烷的组成和交联结构、复合膜的形态结构及其拉伸和光学性能进行表征和分析.发现原料硅油的扩链处理和SiO2的补强作用有助于提高反应的过程稳定性及复合膜的拉伸性能.亲水性的粉体TiO2在成膜过程中易发生进一步的大规模团聚,这在膜表面构筑微纳结构的同时会劣化膜材的力学、光学性能.溶胶-凝胶法自制钛溶胶颗粒表面残留有部分未脱除的有机基团,这使其具有一定的亲油性和较好的有机相容性,因而钛溶胶颗粒可在有机介质和聚硅氧烷膜中达到初级粒子形式的均匀稳定分散.上述形态结构,可使相应复合膜具有更佳的拉伸性能和紫外屏蔽/可见光透过性能,并有望在保持复合膜高耐老化性的同时具有高效的光催化性能.  相似文献   

9.
通过构筑基于含不饱和双键的磺化聚芳醚酮(Allyl-SPAEK)与芳醚型聚苯并咪唑(PBI)的半互穿聚合 物网络(IPN), 获得综合性能优异的可用于高温质子交换膜燃料电池的PBI/Allyl-SPAEK复合膜材料. 在对 Allyl-SPAEK和PBI的分子进行设计和合成的基础上, 采用溶液共混-浇铸方法, 基于UV辐照交联, 获得了由丙烯基生成的共价键和咪唑基-磺酸基形成的强酸碱相互作用组成的IPN新体系, 并系统研究了新型复合膜的热、 机械性能和质子传导率. 结果表明, 具有PBI/Allyl-SPAEK半互穿聚合物网络的复合膜具有较高的质子 传导率和力学性能, 在同等磷酸吸附水平和测试条件下优于PBI膜. 在磷酸吸附水平为13.0左右时, PBI/ Allyl-SPAEK复合膜的最大拉伸强度达到12.1 MPa, 杨氏模量达到131.5 MPa, 是同等磷酸吸附水平下 PBI 膜的2.04倍. 在200 ℃时, 两种PBI/Allyl-SPAEK复合膜的质子传导率均达到 200 mS/cm以上, 比PBI膜传导率提高了38%.  相似文献   

10.
高温质子交换膜燃料电池(HT-PEMFCs)因耐CO能力强,可用重整气直接进料,水热管理简单等,可有效解决氢源问题,助力双碳目标的实现。作为HT-PEMFCs的核心部件,高温质子交换膜(HT-PEM)近些年来备受关注,特别是最具应用前景的磷酸掺杂聚苯并咪唑(PA-PBI)电解质膜。本文综述了PA-PBI电解质膜的种类、制备工艺、质子传输机制以及性能、寿命方面的研究进展;着重总结了PA-PBI电解质膜在性能、寿命方面面临的挑战如高质子电导率与高机械性能的矛盾、成膜性差、磷酸流失过快、机械稳定性与抗氧化稳定性差等;重点探讨了提升PA-PBI电解质膜的手段如分子结构改性、接枝、交联、有机无机复合掺杂等;展望了PA-PBI电解质膜的未来发展方向。  相似文献   

11.
A series of novel organic-inorganic hybrid proton-conducting electrolyte membranes with silane-crosslinked sulfonated poly(aryl ether ketone)(SC-SPAEK) networks was prepared via a simple procedure that includes solution casting and acid treatment. The organosilicon pendants of the silane-grafted SPAEK, which were expected to serve as coupling and crosslinking agents, were found to play a key role in the homogenous dispersion of inorganic particles and improved the performance of hybrid membranes. The hybrid membranes exhibited enhanced proton conductivity, and SC-SPAEK/TiO2-4 showed an extremely high proton conductivity of 0.1472 S/cm at 100℃. The crosslinked hybrid membranes also demonstrated good chemical resistance, oxidative stability, and mechanical properties. The crosslinked hybrid membranes with excellent comprehensive performance may be a promising material for proton exchange membrane fuel cells.  相似文献   

12.
Phosphoric acid‐doped crosslinked proton‐conducting membranes with high anhydrous proton conductivity, and good chemical stability in phosphoric acid were synthesized and characterized. The synthetic procedure of the acid‐doped composite membranes mainly involves the in situ crosslinking of polymerizable monomer oils (styrene and acrylonitrile) and vinylimidazole, and followed by the sulfonation of pendant imidazole groups with butanesultone, and further doped with phosphoric acid. The resultant phosphoric acid‐doped composite electrolyte membranes are flexible and show high thermal stability and high‐proton conductivity up to the order of 10?2 S cm?1 at 160 °C under anhydrous conditions. The phosphoric acid uptake, swelling degree, and proton conductivity of the composite membranes increase with the vinylimidazole content. The resultant composite membranes also show good oxidative stability in Fenton's reagent (at 70 °C), and quite good chemical stability in phosphoric acid (at 160 °C). The properties of the prepared electrolyte membranes indicate their promising prospects in anhydrous proton‐exchange membrane applications. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 , 51, 1311–1317  相似文献   

13.
以自制的高磺化度磺化聚芳醚酮砜(SPAEKS)和含有氨基的聚芳醚酮(Am-PAEK)为原料,通过共溶剂涂膜法制备了不同重量比例的Am-PAEK/SPAEKS复合膜.通过高温(160℃)处理使氨基和磺酸基团在复合膜内形成交联,制得交联型复合膜.复合膜的热性能、尺寸稳定性、阻醇性能有所提高,而且交联型复合膜中的Am-PAEK/SPAEKS-C-3质子传导率在120℃时达到了0.0892 S/cm,高于在相同测试条件下SPAEKS膜的0.0654 S/cm和Nafion膜的0.062 S/cm,而其甲醇渗透系数在25℃时达到0.14×10-6cm2/s,低于SPAEKS膜的0.85×10-6cm2/s和Nafion膜的2×10-6cm2/s.实验结果表明,Am-PAEK/SPAEKS交联型复合膜有望在中高温质子交换膜燃料电池中得到应用.  相似文献   

14.
制备了基于磺化聚芳醚砜(SPAES)及聚醚砜(PES)的填充型复合质子交换膜, 研究了其吸水率、 尺寸变化、 热-机械特性、 质子电导率、 甲醇透过性及稳定性等性能. 通过浸入沉淀相转化法, 采用磺化度分别为30%(S30), 40%(S40)及50%(S50)的SPAES与PES制备了系列微孔型复合质子交换膜 Sx-y(x为SPAES的磺化度, y为SPAES的质量分数); 然后利用真空抽滤法在微孔中填充S50制备了相应的填充型复合质子交换膜Sx-y+F50. 结果表明, 由于微孔的引入及皮层结构的存在, Sx-y膜在低离子交换容量(IEC)条件下仍具有较高的电导率、 优良的机械强度、 优异的化学稳定性及较低的甲醇透过性. 经S50填充后, Sx-y+F50膜的IEC及电导率明显提升, 甲醇透过率大幅下降, 但机械强度及化学稳定性未见劣化. 其中S30-40+F50膜(IEC=0.69 mmol/g)的综合性能最佳, 其质子电导率在90 ℃水中达到50.4 mS/cm; 经140 ℃水处理24 h后失重率仅为8.2%, 质子电导率降低仅9%; 经过芬顿试剂(3% H2O2, 20 mg/L FeSO4, 80 ℃, 1 h)处理后失重率仅为0.66%; 甲醇透过率仅为6.8×10-8 cm2/s.  相似文献   

15.
New acid–base polymer blend membranes for direct methanol fuel cells (DMFC) have been designed using a very accessible commercial polymer, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). The preparation begins with the sulfonation and bromination of PPO to sulfonated PPO (SPPO) and bromomethylated PPO (BrPPO), respectively. Blend membranes are formed by mixing n-propylamine(PrNH2)-neutralized SPPO and PrNH2-aminated BrPPO solutions in N-methyl-2-pyrrolidone (NMP), and casting the mixed solution on glass petri dishes followed by acidification with aqueous hydrochloric acid. The compatibility between the acid and base components of the blend is assured by using acidic and basic polymers deriving from the same parent polymer (PPO). Ionic crosslinking is established between the sulfonic groups of SPPO and the amine groups of aminated BrPPO. The ionic crosslinking strengthens the membrane dimensional stability by reducing water uptake and membrane swelling up to temperatures as high as 80 °C. The membranes fabricated as such display good resistance to methanol crossover amidst some, but acceptable loss of proton conductivity. The characteristic factor (i.e. the ratio of proton conductivity to methanol permeability) increases noticeably with the BrPPO content, with the sample containing 30 wt.% BrPPO showing a 16-fold improvement over Nafion 117. The mechanical properties and oxidative stability of the blend membranes also satisfy the requirements for fuel cell assembly and operation.  相似文献   

16.
Composite membranes based on poly(vinyl alcohol) (PVA) and graphene oxide (GO) were prepared by solution-casting method to be used as proton exchange membranes (PEMs) in fuel cell (FC) applications. Bisulfonation was employed as a strategy to enhance the proton conductivity of these membranes. First, a direct sulfonation of the polymer matrix was accomplished by intra-sulfonation of the polymer matrix with propane sultone, followed by the inter-sulfonation of the polymer chains using sulfosuccinic acid (SSA) as a crosslinking agent. Furthermore, the addition of graphene oxide (GO) as inorganic filler was also evaluated to enhance the proton-conducting of the composite membranes. These membranes were fully characterized by scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and tensile tests. Besides, the proton conductivity of these membranes in a fully hydrated state was also analyzed by electrochemical impedance spectroscopy (EIS). The effect of the intra- and inter-sulfonation of the polymer matrix on the structural, morphological, thermal and mechanical properties of the membranes were determined. Increasing the density of sulfonic acid groups in the membranes resulted in a trade-off between a better proton conductivity (improving from 0.26 to 1.00 mS/cm) and a decreased thermal and mechanical stability. In contrast, the incorporation of GO nanoparticles into the polymer matrix improved the thermal and mechanical stability of both bisulfonated composite membranes. The proton conductivity appreciably increased by the combination of bisulfonation and introduction of GO nanoparticles into the polymer matrix. The sPVA/30SSA/GO composite membrane exhibited a proton conductivity of 1.95 mS/cm at 25 °C. The combination of the GO nanoparticles with the chemical bisulfonation approach of PVA allows thus assembling promising proton exchange membrane candidates for fuel cell applications.  相似文献   

17.
Sulfonated poly(ether ether ketone) (SPK)-zirconium hydrogen phosphate (ZrP) composite membranes were prepared by electro-driven migration of Zr(4+) and simultaneous in situ precipitation of ZrP using phosphoric acid under different electrical gradient, in order to avoid loss in its mechanical stability. Degree of sulfonation was estimated from (1)H NMR and ion-exchange capacity study that was found to be 61% and 57%, respectively. In this method Zr(4+) and HPO(4)(2-) were allowed to diffuse within the pores/channels of the preformed SPK membrane under given electrical gradient and ZrP was precipitated within the membrane matrix. ZrP loading density was measured as a function of applied electrical gradient for a definite reaction time (4 h) and electrolytic environment. Membranes with varied ZrP loading densities were characterized for their thermal and mechanical stabilities, physicochemical and electrochemical properties using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), water content, proton conductivity and methanol permeability. No loss in thermal and mechanical stability of membranes was observed due to incorporation of inorganic component (ZrP) in the membrane matrix. Although the composite membranes exhibited low proton conductivity in comparison to SPK membrane at room temperature, but the presence of the inorganic particles led to an improvement in high temperature conductivity. Selectivity parameter of these composite membranes was estimated at two temperatures namely 30 and 70 degrees C, in latter case it was found significantly higher than that for Nafion membrane (0.79 x 10(5) S s cm(-3)) under similar experimental conditions.  相似文献   

18.
A novel preparation method for a composite proton exchange membrane with reinforced strength and self-humidifying property was developed. Using self-assembly method, highly dispersed poly(diallyldimethylammonium chloride) (PDDA) stabilized Pt nanoparticles were mounted onto the pores of poly(tetrafluoroethylene) (PTFE) porous film to serve the self-humidifying purpose. With Pt nanoparticles fixed on the PTFE pores, the potential problem of any short circuit because of the use of metal nanoparticles can be prevented. Pt-PDDA/PTFE substrate in the composite membrane can enhance the mechanical strength of the membrane and distribute self-humidifying layer adjacent to the anode side. Compared with the cells fabricated with conventional Nafion® and PTFE/Nafion membranes, the performance of the cells with this composite membrane is dramatically improved under dry conditions. Electrochemical impedance spectroscopy technique revealed that these self-humidifying composite membranes could minimize membrane conductivity loss under dry conditions.  相似文献   

19.
The proton exchange membranes(PEMs) were prepared through the solution mixing method of sulfonated poly(etlier ether ketone ketoneXsPEEKK) and cellulose. Cellulose was dissolved by 1-ally 1-3-methylimidazolium chioride(AMIMC1) and then mixed with sPEEKK solution. sPEEKK/cellulose(SC) composite membranes were prepared by solution casting. The membranes have high flexibility and transparency, which meant the compounding in molecular level. Meanwhile, the composite membranes showed excellent mechanical properties and high proton conductivity. The mechanical property reached 29 MPa, and the proton conductivity was as high as 0.32 S/cm. Thus, as a kind of biomaterials, cellulose could be ail excellent reinforcing material for poly(aryl ether ketone)(PAEK) based PEMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号