首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
含3-取代苯酞结构的化合物广泛存在于植物和真菌中,是传统中草药中的活性成分,在现代医药中受到广泛关注.本综述列举了部分具有生物活性的苯酞类化合物,综述了3-取代苯酞类化合物的合成研究进展,特别是近年来报道的对映体选择性合成方法,以期对设计、发现具有广泛适用性和高立体选择性地合成苯酞骨架或类似化合物的方法产生启示作用.这些方法包括:(a)通过形成C—C键的反应构建内酯,例如2-酰基苯甲酸酯等的醇醛缩合/内酯化级联反应;(b)通过形成C—O键的反应构建内酯,例如2-酰基苯甲酸酯的还原内酯化或3-烯基苯酞的还原,分子内氧化/内酯化,或分子内氧化还原/内酯化.这些方法对于高立体选择性合成苯酞类化合物和药物研究具有重要意义.  相似文献   

2.
以1,2:5,6-双亚环己基-D-甘露醇为手性骨架,合成含有联苯基团的新型手性tropos配体;分别以1,2:5,6-双异丙叉-D-甘露醇和1,2:5,6-双亚环己基-D-甘露醇为原料,合成系列双齿亚磷酸酯配体,将这些配体应用于铑催化α-乙酰氨基肉桂酸甲酯5a和α-苯酰氨基肉桂酸甲酯5b氢化反应中,考察配体结构,溶剂,底物/催化剂的摩尔比对反应对映选择性的影响,优化了反应条件;在底物是α-乙酰胺基肉桂酸甲酯时,配体的双异丙叉骨架与(R)-联萘部分是匹配组合,反应对映选择性高达93.5%.在优化的反应条件下,尝试七个苯环含不同取代基团的底物,无论供电子基团在芳环的邻位还是对位,其氢化产物的对映选择性均高于相应位置为吸电子基团的.  相似文献   

3.
姜艳  汪信  孙小强  王云翔 《应用化学》2009,26(11):1371-1373
以(R,R)-1,2-二苯基乙二醇和氰尿酰氯为原料,经保护、醚化、去保护、取代等反应合成了一种新的手性多齿配体2-乙氧基-4-(2-甲氧基-乙氧基)-6-((1R,2R)-1,2-二苯基-2-甲氧基-乙氧基)-1,3,5-三嗪,并通过1HNMR 、LCMS和元素分析对目标化合物的结构进行了表征。  相似文献   

4.
合成了6个具有C2对称性的类卟啉手性双(口恶)唑啉配体,将这些化合物与RuCl3配位,NaIO4作氧化剂,应用于反式1,2-二苯基乙烯的不对称环氧化反应,获得了较高的产率(46.0%),但ee值(6.3%)较低.  相似文献   

5.
叔胺衍生的N-氧化物配体的结构多样性合成仍然是不对称催化领域最重要的课题之一。以光学纯的脯氨酰胺或羟脯氨酰胺1与各种取代的吡啶-2-甲醛2发生缩合环化反应,生成中间体3,然后中间体3中的氮原子在氧化剂m-CPBA(间氯过氧苯甲酸)的作用下发生氧化反应,合成了24个新型手性叔胺氮氧化合物4aa~4bk,总产率43%~58%,dr值为10/1~>20/1,其结构经1H NMR,13C NMR和HR-MS(ESI-TOF)表征,化合物4ai的绝对构型(3S, 4R, 7aS)通过单晶X-射线衍射进行了进一步确定。该类化合物以L-脯氨酸衍生物作为手性源制备了手性N-氧化物,今后可以为金属不对称催化提供新配体筛选。  相似文献   

6.
酸性离子交换树脂催化合成二氢香豆素类化合物   总被引:1,自引:0,他引:1  
黄雁  林永成 《有机化学》2004,24(11):1451-1453
以强酸性离子交换树脂为催化剂,由间苯三酚与丙烯酸或取代丙烯酸反应合成了3个二氢香豆素和1个四氢苯并二吡喃酮类化合物,其中5-羟基-3,4,6,7-四氢苯并[1,2-b;5,4-b']二吡喃-2,8-二酮(2a)和3-甲基-5,7-二二羟基-3,4-二氢香豆素(1b)还未见文献报道.取代丙烯酸的反应活性低于丙烯酸,使用甲苯-四氢呋喃混合溶剂代替甲苯单一溶剂可使2a的产率由20%提高到66%.  相似文献   

7.
烯基取代环戊二烯基钌配合物的合成及晶体结构   总被引:1,自引:0,他引:1  
金军挺  黄吉玲  钱延龙 《化学学报》1999,57(9):1043-1046
本文通过环戊二烯基钠(茂钠)与溴丙烯反应制得单取代的环戊二烯,茂钠与氯丙烯得到双取代的环戊二烯。利用这两个配体合成了烯基取代的环戊二烯基(双三苯膦)氯化钌(1,2)并对化合物(2)进行了晶体结构分析。  相似文献   

8.
1,5-苯并二氮杂■类化合物是一类具有重要生物或药理活性的七元氮杂环化合物,酯基、羧基、酰基、芳基等均是其活性基团.在室温(25℃)下以醛羰基化合物或二羰基化合物、3-丁炔-2-酮、取代的邻苯二胺为原料,无水乙醇为溶剂,磁性纳米铁酸钴(CoFe2O4)为催化剂/无催化剂条件下三组分串联反应一锅绿色合成34种COR、COOR或COOH取代的1,5-苯并二氮杂■类化合物,产率最高可达90%,并提出了催化串联合成反应机理.该串联反应历经迈克尔加成反应、亲核加成反应、脱水反应、分子内的亚胺-烯胺环合反应、质子转移等反应过程,一个反应体系内合成了多官能团化的1,5-苯并二氮杂■化合物,实现了温和条件下,一个反应体系中在苯并二氮杂■的七元环上同时引入活性的酰基、酯基或羧基等多个活性基团.该方法的优势在于合成方法新颖、原子经济、目标化合物产率及选择性较高,实现了反应过程的绿色化,为绿色合成苯并氮杂■类化合物提供了新思路.  相似文献   

9.
以(1R,2R)-1,2-二苯基乙二醇和2,4,6-三氯-1,3,5-三嗪为原料,经保护、取代、去保护等反应合成了3个新的手性多齿配体,并将其应用于二乙基锌对苯甲醛不对称加成反应中。结果表明,2,4-二(4-吗啉基)-6-((1R,2R)-1,2-二苯基-2-羟基乙氧基)-1,3,5-三嗪在此反应中的效果最好,所得产物ee值为32%。  相似文献   

10.
报道了一种铱催化3,4-二氢吡咯并吡嗪和3,4-二氢吲哚[1,2-a]并吡嗪的不对称氢化合成相应的1,2,3,4,-四氢吡咯/吲哚[1,2-a]并吡嗪化合物的方法.该催化体系适用于芳基取代的底物和烷基取代的底物,反应收率高达99%,对映选择性过量值最高为95%.该反应操作简单,原子经济性好.  相似文献   

11.
A new multicomponent coupling reaction for the enantioselective synthesis of pyrrolo[1,2‐a]indoles under the catalysis of a chiral disulfonimide is described. The high specificity of the reaction is a consequence of the multidentate character of the Brønsted acid catalyst. Insights from DFT calculations helped explain the unexpected high enantioselectivity observed with the simplest 3,3′‐unsubstituted binaphthyl catalyst as a result of transition‐state stabilization by a network of cooperative noncovalent interactions. The remarkable enantioinversion resulting from the simple introduction of substituents at 3‐ and 3′‐positions, the first reported example of this phenomenon in the context of binaphthalene‐derived Brønsted acid catalysis, was instead attributed to destabilizing steric interactions.  相似文献   

12.
The precise mechanism of the chiral phosphoric acid-catalyzed aldol-type reaction of azlactones with vinyl ethers was investigated. DFT calculations suggested that the reaction proceeds through a Conia-ene-type transition state consisting of the vinyl ether and the enol tautomer of the azlactone, in which the catalyst protonates the nitrogen atom of the azlactone to promote enol tautomerization. In addition, the phosphoryl oxygen of the catalyst interacts with the vinyl proton of the vinyl ether. The favorable transition structure features dicoordinating hydrogen bonds. However, these hydrogen bonds are not involved in the bond recombination sequence and hence the catalyst functions as a template for binding substrates. From the results of theoretical studies and experimental supports, the high enantioselectivity is induced by the steric repulsion between the azlactone substituent and the binaphthyl backbone of the catalyst under the catalyst template effect.  相似文献   

13.
We report a dual function asymmetric catalysis by a chiral phosphoric acid catalyst that controls both enantioselective addition of an achiral α-vinyl allylboronate to aldehydes and pseudo-axial orientation of the α-vinyl group in the transition state. The reaction produces dienyl homoallylic alcohols with high Z-selectivities and enantioselectivities. Computational studies revealed that minimization of steric interactions between the alkyl groups of the diol on boron and the chiral phosphoric acid catalyst influence the orientation of α-vinyl substituent of the allylboronate reagent to occupy a pseudo-axial position in the transition state.  相似文献   

14.
1,2‐Bisphosphines have been identified as one class of important and powerful chiral ligands in asymmetric catalysis with transition metals. Herein, a copper(I)‐catalyzed asymmetric hydrophosphination of α,β‐unsaturated phosphine sulfides was developed with the assistance of “soft–soft” interaction between copper(I)‐catalyst and the phosphine sulfide moiety, which afforded 1,2‐bisphosphine derivatives with diversified electronic nature and steric hindrance in high to excellent yields with high to excellent enantioselectivity. Moreover, the challenging catalytic asymmetric hydrophosphination/protonation reaction was achieved with excellent enantioselectivity. Strikingly, the dynamic kinetic resolution of racemic diarylphosphines was also successfully carried out with high to excellent diastereo‐ and enantioselectivities. Interestingly, the nucleophilic copper(I)‐diphenylphosphide species was characterized by 31P NMR spectrum and mass spectrum. At last, three products were transformed to chiral 1,2‐bisphosphines, which were employed as ligands in Rh‐catalyzed asymmetric hydrogenation of α‐amino‐α,β‐unsaturated ester. The α‐amino acid derivative was produced in high enantioselectivity, which demonstrated the utility of the present methodology.  相似文献   

15.
Direct asymmetric catalytic aldol reactions have been successfully performed using aldehydes and unmodified ketones together with commercially available chiral cyclic secondary amines as catalysts. Structure-based catalyst screening identified L-proline and 5,5-dimethyl thiazolidinium-4-carboxylate (DMTC) as the most powerful amino acid catalysts for the reaction of both acyclic and cyclic ketones as aldol donors with aromatic and aliphatic aldehydes to afford the corresponding aldol products with high regio-, diastereo-, and enantioselectivities. Reactions employing hydroxyacetone as an aldol donor provide anti-1,2-diols as the major product with ee values up to >99%. The reactions are assumed to proceed via a metal-free Zimmerman-Traxler-type transition state and involve an enamine intermediate. The observed stereochemistry of the products is in accordance with the proposed transition state. Further supporting evidence is provided by the lack of nonlinear effects. The reactions tolerate a small amount of water (<4 vol %), do not require inert reaction conditions and preformed enolate equivalents, and can be conveniently performed at room temperature in various solvents. In addition, reaction conditions that facilitate catalyst recovery as well as immobilization are described. Finally, mechanistically related addition reactions such as ketone additions to imines (Mannich-type reactions) and to nitro-olefins and alpha,beta-unsaturated diesters (Michael-type reactions) have also been developed.  相似文献   

16.
Antidepressant drug (R)-rolipram was readily prepared on a large scale from isovanilline via a succinct route. The key reaction was carried out using a 1 mol% loading of nickel(II)-bis[(S,S)-N,N′-dibenzylcyclohexane-1,2-diamine]Br2 complex as the catalyst. The ee% could reach to 99%, and the catalyst could be recovered and used in the next reaction cycle with high ee%.  相似文献   

17.
A chiral N,N′‐bis(salicylidene)ethylenediamine (salen) polymer has been prepared by a condensation reaction between a thiophenedisalicyladehyde derivative and (S,S)‐cyclohexane‐1,2‐diamine. This polymeric compound was demonstrated to possess a cyclic structure with two to five repetitive units. The addition of chromium(II) salts led to the generation of a chiral catalyst that could be recovered as an insoluble powder. The performance of this new calixsalen‐type catalyst was examined in various transformations, particularly in its ability to promote nucleophilic epoxide ring opening under heterogeneous conditions. The target products were obtained in high yields and with improved selectivity compared with those obtained by using analogous linear polymers. The arrangement of the catalytic sites in the cyclic structure is probably more suitable for the necessary cooperative bimetallic pathway of this demanding reaction. The catalyst could be successfully recycled. This approach represents the first use of calixsalen complexes under heterogeneous catalytic conditions.  相似文献   

18.
We report a dual function asymmetric catalysis by a chiral phosphoric acid catalyst that controls both enantioselective addition of an achiral α‐vinyl allylboronate to aldehydes and pseudo‐axial orientation of the α‐vinyl group in the transition state. The reaction produces dienyl homoallylic alcohols with high Z‐selectivities and enantioselectivities. Computational studies revealed that minimization of steric interactions between the alkyl groups of the diol on boron and the chiral phosphoric acid catalyst influence the orientation of α‐vinyl substituent of the allylboronate reagent to occupy a pseudo‐axial position in the transition state.  相似文献   

19.
《Tetrahedron》2019,75(31):4110-4117
Enantioselective allylboration of aldehydes with α-substituted β-methyl allylboronate was reported. By using BF3·OEt2 as the catalyst, γ,δ-disubstituted homoallylic alcohols were obtained in good yields with high E-selectivities and enantioselectivities. Transition state analysis revealed that the disfavored transition state suffers from a syn-pentane interaction between the BF3 catalyst and axially oriented α-substituent of the allylboron reagent. Such a syn-pentane interaction is severe enough to overcome the A1,2 allylic strain between the β-methyl group and the α-substituent of the boron reagent that is present in the favored competing transition state. Consequently, the reaction proceeded with equatorial placement of the α-substituent to furnish γ-methyl substituted homoallylic alcohols with high E-selectivity.  相似文献   

20.
Summary: Novel polymers with chiral 1,2-diamine moiety were successfully synthesized by polycondensation of N-Boc protected enantiopure 1,2-diamine bearing two phenol groups ( S , S )-4 , bisphenol derivatives, and dibromides, followed by deprotection of N-Boc moiety. Hydrogenation of acetophenone was performed with use of polymeric catalyst system prepared from the polymer-supported chiral 1,2-diamine and RuCl2/(S)-BINAP. The reaction proceeded smoothly even in 2-propanol to give 1-phenylethanol in quantitative yield with high level of enantioselectivity. Furthermore, various other aromatic ketones could be asymmetrically hydrogenated by the polymeric catalyst system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号