首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 703 毫秒
1.
用于树脂传递模塑成型的苯乙炔封端的酰亚胺预聚体制备   总被引:1,自引:0,他引:1  
采用4-苯乙炔苯酐(4-PEPA)、1,3-二(3-氨基苯氧基-4′-苯酰基)苯(BABB)和4,4′-双(3-氨基苯氧基)二苯甲酮(APBP)合成了两种苯乙炔苯酐封端的聚酰亚胺预聚体PI-1和PI-2, 并对预聚体的熔体黏度、稳定性、固化后树脂的热稳定性能和机械性能等进行了研究. 结果表明, 制备的预聚体具有较高产率(>95%); 与其它PEPA封端的聚酰亚胺相比, 两种预聚物在较低温度(200 ℃)时均具有很低的熔体黏度(1 Pa·s)和良好的熔体黏度稳定性, 固化后玻璃化温度达到300 ℃以上, 可适用于树脂传递模塑(RTM)成型制备耐高温高性能树脂基复合材料, 且在成型工艺上有了很大改善; 固化后的树脂具有优异的热稳定性能和良好的机械性能.  相似文献   

2.
为开发可低温固化的聚酰亚胺树脂, 通过分子结构设计将苯并噁嗪单元引入聚酰亚胺树脂中, 合成了含苯并噁嗪单元及乙炔基封端的双官能化新型聚酰亚胺预聚体(PIBzA). 经高温处理, 苯并噁嗪单元发生开环交联, 同时, 乙炔基端基发生三聚成环反应, 从而在固化树脂中形成双重交联网络结构. 苯并噁嗪单元的引入使聚酰亚胺树脂最快固化反应温度降低约32 ℃, 有效降低了固化温度. 同时, 苯并噁嗪单元的引入未大幅度降低树脂的耐热稳定性, 其玻璃化转变温度(Tg)介于266~290 ℃之间, 5%热失重温度(Td,5%)接近500 ℃, 依然可以满足耐高温复合材料的应用需求. 此外, PIBzA固化树脂具有低介电特性, 其介电常数k介于2.3~3.0, 介电损耗介于0.002~0.008, 可满足透波复合材料及先进微电子封装材料的应用需求.  相似文献   

3.
硅氧烷表面改性聚醚酯聚酰亚胺的研究   总被引:1,自引:0,他引:1  
通过两种方法。即将γ-氨丙基封端的聚二甲基硅氧烷和对氨基苯甲酸酯封端的聚(四亚甲基)醚与均苯四甲酸二酐共缩聚,和将两种预制的聚酰胺酸溶液共混,合成了一组硅氧烷改性的聚醚酯聚酰亚胺材料。ESCA能谱和表面水接触角测量研究材料的表面性质发现,硅氧烷在材料表面富集,对聚醚酯聚酰亚胺材料具有显著的表面改性作用,硅氧烷改性的聚醚酯聚酰亚胺,其热稳定性能和气体透过性能有一定程度的提高,但抗张强度和介电性能有所降低。  相似文献   

4.
适用于RTM成型聚酰亚胺材料研究进展   总被引:2,自引:0,他引:2  
综述了适用于RTM成型耐高温聚酰亚胺材料的研究进展,主要包括降冰片烯酸酐(NA)封端的PMR聚酰亚胺树脂和使用苯乙炔基封端剂合成的酰亚胺低聚物,在这其中采用苯乙炔基封端剂合成的酰亚胺低聚物具有低的熔体粘度和良好的熔体稳定性,固化交联后的聚合物及树脂基复合材料具有良好的热性能和力学性能。本文介绍了上述聚合物化学合成、结构与性能之间的关系,并对适用于RTM成型耐高温聚酰亚胺材料的应用进行了简单介绍。  相似文献   

5.
以烯丙基聚乙二醇(APEG)、甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)为共聚物单体合成了含聚乙二醇(PEG)的羟基丙烯酸预聚物(BOH),该预聚物再与α,ω-三乙氧基硅烷封端的聚二甲基硅烷低聚物(TSU)和α,ω-三乙氧基硅烷封端的全氟聚醚低聚物(PFU)通过缩合反应制得含有PEG的氟硅改性丙烯酸交联网络防污涂层.通过核磁共振氢谱(~1H-NMR)、红外光谱(FTIR)对聚合物的结构进行了表征.通过原位纳米测试系统、接触角测试和生物评价等表征方法,探讨了树脂中TSU,PFU和BOH配比对表面能、弹性模量及其生物防污性能的影响.结果表明兼具氟硅低表面能性和PEG抗蛋白吸附性能的交联网络涂层TFS-BOH-B具有好的防污性能,且随着TSU和PFU含量增加,防污性能提高.  相似文献   

6.
以氨丙基封端的聚二甲基硅氧烷(PDMS)、 4,4'-二氨基二苯醚(4,4'-ODA)和3,4,3',4'-联苯四酸二酐(s-BPDA)为原料, 合成了聚酰胺酸硅氧烷嵌段共聚物. 将此嵌段共聚物和聚酰胺酸(s-BPDA/4,4'-ODA)共混, 通过控制制膜条件, 利用各组分在不同溶剂中的溶解度的差别, 使聚酰亚胺硅氧烷富集在膜的上表面. 因为两相在结构和性质上的相似性, 当聚酰胺酸硅氧烷和聚酰胺酸混合时, 具有很好的相容性, 消除了两相间的界面, 从而制备了优异的聚酰亚胺硅氧烷/聚酰亚胺两面异性的复合膜材料. 利用X射线光电子能谱(XPS)和水滴接触角对此复合膜进行了表征, 证明了此复合膜的两面异性, 并对此复合膜进行了热性能和机械性能研究, 发现此薄膜保持了聚酰亚胺优异的性能.  相似文献   

7.
使用4-苯乙炔基苯胺(4-PEA)作为反应性封端剂,和3,3′,4,4′-二苯醚四酸二酐(ODPA),3,3′,4,4′-联苯四酸二酐(BPDA),1,4-双(4′-氨基-2′-三氟甲基苯氧基)苯(BTPB)和3,4′-二氨基二苯醚(3,4-′ODA)反应合成了系列4-苯乙炔基苯基封端的聚酰亚胺低聚物,对低聚物的化学结构、热性能和熔体粘度以及固化后树脂的热性能等进行了研究.实验结果表明,低聚物均具有一定的结晶性,含有ODPA的聚酰亚胺低聚物较之含有BPDA的低聚物具有更低的熔体粘度,且出现最低熔体粘度的温度更低;固化后的树脂表现出良好的热性能,含有BPDA的树脂具有更高的玻璃化转变温度;系列低聚物中二胺单体的比例对于低聚物的熔体粘度和固化后树脂的热稳定性有一定影响.  相似文献   

8.
光/潮气双重固化聚氨酯涂层的制备及性能研究   总被引:1,自引:0,他引:1  
梁红波  郝名扬  管静  熊磊  钟卫 《高分子学报》2009,(12):1211-1218
以甲苯-2,4-二异氰酸酯(TDI)和二乙醇胺(DEOA)为原料一步法合成了超支化聚氨酯,对其改性制备了光固化超支化聚氨酯丙烯酸酯(HPUA)和一系列双重固化(UV/潮气)超支化聚氨酯丙烯酸酯(DHPUA),使用傅立叶红外光谱(FT-IR)、核磁共振氢谱(1H-NMR)和碳谱(13C-NMR)以及凝胶色谱(GPC)对其分子结构进行了表征.并以其为预聚物制备光固化涂层,通过对双重固化涂层的表面形貌、热性能和物理性能的研究,结果表明,超支化双重固化涂层经过潮气固化后,涂层表面的粗糙度随着树脂中硅氧烷端基的含量的增加先下降后上升;超支化双重固化涂层的物理性能和热稳定性都随着树脂中硅氧烷端基的含量的增加而提升.  相似文献   

9.
热熔法制备了一系列聚苯基甲氧基硅氧烷(PPMS)、聚甲基苯基甲氧基硅氧烷(PMPS)改性环氧树脂,通过环氧值、红外光谱(IR)分析表明聚硅氧烷接枝了E-20环氧树脂且环氧基保持不变.探讨了有机硅含量对改性树脂固化体系耐热性能及韧性的影响.实验表明,当E-20环氧树脂与PPMS、PMPS的质量比为7∶3时,改性树脂固化体系的耐热性能明显提高,玻璃化转变温度(Tg)为95.8、88.3℃,分别比改性前提高了9.0℃和1.5℃;质量损失50%时的热分解温度(Td)为476.5、487.8℃,分别比改性前提高了58.3℃和69.5℃.与ED-30固化体系相比,EPMS-30固化物的耐热性能,韧性等力学性能提高的更加明显,并且还具有优良的涂膜性能.  相似文献   

10.
以四氯化锆、苯乙炔和间乙炔基苯胺(APA)为原料,通过先驱体合成法制备新型含锆有机先驱体树脂——含Zr聚乙炔基苯胺树脂(ZAPA)。通过FT-IR表征了其结构,利用DSC及FT-IR研究了其固化反应,通过TG研究了其固化物的耐热性能,采用XRD和EDS研究了其固化物的烧结性能。结果表明:ZAPA树脂可以发生固化交联反应,其固化物相对于APA的固化物具有更好的耐热性能,在N2气氛下,ZAPA树脂固化物失重5%的温度为445°C,1 000°C下的质量残余率为43.7%;在空气气氛中,1 000°C下烧结5h后,可形成ZrO2晶体。  相似文献   

11.
New strategies for the synthesis of perfectly alternating segmented polyimide-polydimethyl siloxane copolymers were developed by utilizing a transimidization method. Imide oligomers endcapped with 2-aminopyrimidine were reacted with aminopropyl terminated (dimethyl siloxane) oligomers to afford perfectly alternating segmented imide siloxane copolymers. The polymerization was conducted in solvents such as chlorobenzene and chlorofrom. High molecular weight, fully imidized perfectly alternating segmented imide siloxane copolymers were obtained within 2 h at temperatures of 60-110°C. The mechanism of the reaction was further elucidated via model compounds and NMR characterization. The block copolymers exhibited two Tgs due to the microphase separation of the polyimide and polysiloxane phases. The Tg of the polyimide phase was a function of the length of the polyimide block. However, partial phase mixing was also evident from the DSC results on the imide siloxane copolymers prepared with low molecular weight polyimide segments. Thermooxidative stability and tensile properties of the perfectly alternating segmented imide siloxane copolymers were found to be principally dependent on the amount of poly (dimethyl siloxane) incorporated in the copolymer and did not correlate with the poly (dimethyl siloxane) or polyimide block lengths. The stress-strain behavior of both solvent cast films or molded films is also reported. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The role of polydimethylsiloxane (PDMS) as a compatibilizer of polyimide/silica hybrid composites was investigated. Introduction of PDMS into a polyimide matrix retards the phase separation of hybrid composites and also prevents the formation of high‐molecular‐weight silicate. PDMS interacts with silica because of the similarity of its structure with the sol‐gel glass matrix of the silica precursor, indicating that poly(imide siloxane)/silica might be a good candidate material for organic/inorganic hybrid composites.  相似文献   

13.
Benzoxazine monomer (Ba) was blended with soluble poly(imide‐siloxane)s in various weight ratios. The soluble poly(imide‐siloxane)s with and without pendent phenolic groups were prepared from the reaction of 2,2′‐bis(3,4‐dicarboxylphenyl)hexafluoropropane dianhydride with α,ω‐bis(aminopropyl)dimethylsiloxane oligomer (PDMS; molecular weight = 5000) and 3,3′‐dihydroxybenzidine (with OH group) or 4,4′‐diaminodiphenyl ether (without OH group). The onset and maximum of the exotherm due to the ring‐opening polymerization for the pristine Ba appeared on differential scanning calorimetry curves around 200 and 240 °C, respectively. In the presence of poly(imide‐siloxane)s, the exothermic temperatures were lowered: the onset to 130–140 °C and the maximum to 210–220 °C. The exotherm due to the benzoxazine polymerization disappeared after curing at 240 °C for 1 h. Viscoelastic measurements of the cured blends containing poly(imide‐siloxane) with OH functionality showed two glass‐transition temperatures (Tg's), at a low temperature around ?55 °C and at a high temperature around 250–300 °C, displaying phase separation between PDMS and the combined phase consisting of polyimide and polybenzoxazine (PBa) components due to the formation of AB‐crosslinked polymer. For the blends containing poly(imide‐siloxane) without OH functionalities, however, in addition to the Tg due to PDMS, two Tg's were observed in high‐temperature ranges, 230–260 and 300–350 °C, indicating further phase separation between the polyimide and PBa components due to the formation of semi‐interpenetrating networks. In both cases, Tg increased with increasing poly(imide‐siloxane) content. Tensile measurements showed that the toughness of PBa was enhanced by the addition of poly(imide‐siloxane). Thermogravimetric analysis showed that the thermal stability of PBa also was enhanced by the addition of poly(imide‐siloxane). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2633–2641, 2001  相似文献   

14.
杨士勇 《高分子科学》2016,34(8):933-948
To improve the processability and thermal stability of polyimide, a series of novel phenylethynyl-endcapped oligoimides(PEPA-oligoimides) with calculated molecular weights(M_nC) were successfully prepared from thermal imidization of 4,4'-(9-fluorenylidene) dianiline(BAFL) as fluorenyl diamine, 4,4′-oxy-diphthalic anhydride(ODPA) as aromatic dianhydride and 4-phenylethynylphthalic anhydride(4-PEPA) acted as reactive end-capping reagent at elevated temperatures. Experiment results indicated that the oligoimides were the mixtures of PEPA-endcapped oligomers with different degrees of polymerization characterized by MALDI-TOF mass spectra. The influence of chemical structures on the melt processabilities of the oligoimides, the thermal, dielectric and mechanical properties of the thermoset resins was studied. The typical oligoimide resin owned minimum melt viscosity of 0.2 Pa·s at around 310 °C and wide melting processing window, suitable for resin transfer molding(RTM). Besides, its corresponding thermal-cured polyimide resin possessed glass transition temperature(T_g) as high as 514 °C. The dielectric constants of polyimide resins decreased from 3.15 to 2.80 by reducing the M_nC. The mechanical properties of the polyimide neat resins were improved gradually with increasing MnC. Finally, the carbon fiber/polyimide(C_f/PI) composite laminates showed excellent mechanical strength retention rate at 350 °C, might be long-term served at extremely high temperature in aerospace and aviation field.  相似文献   

15.
胡祖明 《高分子科学》2016,34(1):122-134
With the goal of improving processability of imide oligomers and achieving high toughness of thermosetting polyimides, a series of 4-phenylethynylphthalic anhydride(PEPA)-terminated imide oligomers prepared by the reaction of 2,3,3',4'-diphenyl ether tetracarboxylic acid dianhydride(a-ODPA) and 3,4'-oxydianiline(3,4'-ODA) with different molecular weights(degree of polymerization: n = 1?9) were formed. The resultant oligomers with different molecular weights were characterized for their chemical architecture, cure behavior, thermal properties, solubility in organic solvents and rheological characteristics. Besides, the thermal properties and tensile test of cured polyimide films were also evaluated. The imide oligomer(degree of polymerization: n = 1) has some somewhat crystalline phase, and imide oligomers(degree of polymerization: n = 2?9) showed excellent solubility(40 wt%) in N-methyl-2-pyrrolidone(NMP) and N,Ndimethylacetamide(DMAc) at room temperature. Furthermore, the rheological properties of imide oligomers showed very low melt viscosity and wider processing window. The cured films exhibited good thermal properties with the glass transition temperatures of 282?373 ?C and 5 wt% thermal decomposition temperatures higher than 551 ?C in nitrogen atmosphere. The elongation at break of the prepared films was found to be high(almost 9.3%).  相似文献   

16.
以4,4'-对苯二甲酰二邻苯二甲酸酐(TDPA)为芳二酐单体,对苯二胺(PPD)为芳二胺单体,经低温溶液缩聚制得成膜性能优良的高相对分子质量聚酰胺酸(PAA),再经过热亚胺化制备双酮酐型聚酰亚胺(PI)薄膜。 采用傅里叶变换红外光谱仪(FT-IR)、广角X射线衍射(WAXD)、差示扫描量热仪(DSC)、动态热机械分析仪(DMA)、热重分析仪(TGA)、紫外-可见分光光度计(UV-Vis)及力学性能等技术手段表征了聚酰亚胺膜的结构和性能,考察了不同亚胺化温度对合成的双酮酐型聚酰亚胺膜性能的影响。 结果表明,经程序升温至320 ℃能使PAA热亚胺化基本趋于完成。 PI薄膜为部分有序聚集态结构,玻璃化转变温度(Tg)为298 ℃,具有优异的热性能,热失重温度(T5%)为523 ℃。 拉伸强度达到130 MPa,弹性模量为5.77 GPa。 PI薄膜紫外光透过截止波长为375 nm,在可见光区具有良好的透光性能及耐溶剂性能。  相似文献   

17.
A novel imide ring and siloxane-containing cycloaliphatic epoxy compound 1,3-bis[3-(4,5-epoxy-1,2,3,6-tetrahydrophthalimido)propyl]tetramethyldisiloxane (BISE) was synthesized from 1,3-bis(3-aminopropyl)tetramethyldisiloxane and tetrahydrophthalic anhydride by a two-step procedure, which was then thermally cured with alicyclic anhydrides hexahydro-4-methylphthalic anhydride (HMPA) and hexahydrophthalic anhydride (HHPA), respectively. As comparison, a commercial available cycloaliphatic epoxy 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate (ERL-4221) cured with the same curing agents was also investigated. The experimental results indicated that the BISE gave the exothermic starting temperature higher than ERL-4221 no mater what kind of curing agents applied, implying the reactivity of the former is lower than the latter. The fully cured BISE epoxy resins have good thermal stability with thermal decomposition temperature at 5% weight loss of 346-348 °C in nitrogen, although they gave the relatively low glass transition temperatures due to the presence of flexible propyl and siloxane segments in the epoxy backbone. The BISE epoxy resins exhibited good mechanical and dielectric properties as well as low water absorption. The improved dielectric properties and the reduced water absorption of BISE epoxy resins are attributed to the low polarity as well as the hydrophobic nature of siloxane segment in the epoxy backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号