首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We report on the singlet ground and singlet/triplet excited-state features of a series of bucky ferrocenes, bucky ruthenocenes, and respective reference compounds. In the bucky ferrocene conjugates, intimate contacts between the fullerenes and ferrocenes result in appreciable ground-state interactions-suggesting a substantial shift of charge density from the electron donor (i.e., ferrocene) to the electron acceptor (i.e., fullerene). In contrast, no prominent charge-transfer features were observed for the bucky ruthenocene conjugates. An arsenal of experimental techniques, ranging from fluorescence (i.e., steady state and time-resolved) and pump probe experiments (i.e., femtosecond and nanoseconds) to pulse radiolysis, were employed to examine excited-state interactions. In the excited states, bucky ferrocene conjugates are dominated by rapid charge separation reactions (0.8 +/- 0.1 ps) to yield metastable radical ion pairs. The radical ion pair lifetimes vary between 27 and 39 ps. No charge separation was, however, found in the corresponding bucky ruthenocence. Instead, an intrinsically faster excited-state deactivation (approximately 200 ps) evolves from the heavier ruthenium center-relative to iron. This effect is further augmented by the unfavorably shifted oxidation potential in ruthenocene of about 0.61 V, which in ruthenocene (-deltaG(ET) = -0.26 eV), in contrast to ferrocene (-deltaG(ET) = 0.35 eV), renders charge separation thermodynamically unfeasible.  相似文献   

2.
Donor-substituted 2-(2'-arylsulfonamidophenyl)benzimidazoles undergo efficient excited-state intramolecular proton transfer (ESIPT) upon photoexcitation. The tautomer emission energy depends strongly on the substituent attachment position on the fluorophore pi-system. While substitution with a donor group in the para-position relative to the sulfonamide moiety yields an emission energy that is red-shifted relative to the unsubstituted fluorophore, fluorescence of the meta-substituted derivative appears blue-shifted. To elucidate the origin of the surprisingly divergent emission shifts, we performed detailed photophysical and quantum chemical studies with a series of methoxy- and pyrrole-substituted derivatives. The nature and contribution of solvent-solute interactions on the emission properties were analyzed on the basis of solvatochromic shift data using Onsager's reaction field model, Reichardt's empirical solvent polarity scale ET(30), as well as Kamlet-Abboud-Taft's empirical solvent index. The studies revealed that all ESIPT tautomers emit from a moderately polarized excited-state whose dipole moment is not strongly influenced by the donor-attachment position. Furthermore, the negative solvatochromic shift behavior was most pronounced in protic solvents presumably due to specific hydrogen-bonding interactions. The extrapolated gas-phase emission energies correlated qualitatively well with the trends in Stokes shifts, suggesting that solute-solvent interactions do not play a significant role in explaining the divergent emission energy shifts. Detailed quantum chemical calculations not only confirmed the moderately polarized nature of the ESIPT tautomers but also provided a rational for the observed emission shifts based on the differential change in the HOMO and LUMO energies. The results gained from this study should provide guidelines for tuning the emission properties of this class of ESIPT fluorophores with potential applications in analytical chemistry, biochemistry, or materials science.  相似文献   

3.
Proton-coupled electron transfer (PCET) kinetics of a Zn(II) porphyrin donor noncovalently bound to a naphthalene-diimide acceptor through an amidinium-carboxylate interface have been investigated by time-resolved spectroscopy. The S1 singlet excited-state of a Zn(II) 2-amidinium-5,10,15,20-tetramesitylporphyrin chloride (ZnP-beta-AmH+) donor is sufficiently energetic (2.04 eV) to reduce a carboxylate-diimide acceptor (DeltaG degrees = -460 mV, THF). Static quenching of the porphyrin fluorescence is observed and time-resolved measurements reveal more than a 3-fold reduction in the S1 lifetime of the porphyrin upon amidinium-carboxylate formation (THF, 298 K). Picosecond transient absorption spectra of the free ZnP-beta-AmH+ in THF reveal the existence of an excited-state isosbestic point between the S1 and T1 states at lambdaprobe = 650 nm, providing an effective 'zero-kinetics' background on which to observe the formation of PCET photoproducts. Distinct rise and decay kinetics are attributed to the build-up and subsequent loss of intermediates resulting from a forward and reverse PCET reaction, respectively (kPCET(fwd) = 9 x 108 s-1 and kPCET(rev) = 14 x 108 s-1). The forward rate constant is nearly 2 orders of magnitude slower than that measured for covalently linked Zn(II) porphyrin-acceptor dyads of comparable driving force and D-A distance, establishing the importance of a proximal proton network in controlling charge transport.  相似文献   

4.
The present paper highlights results of a systematic study of photoinduced electron transfer, where the fundamental aspects of the photochemistry occurring in solutions and in artificially or self-assembled molecular systems are combined and compared. In photochemical electron transfer (ET) reactions in solutions the electron donor, D, and acceptor, A, have to be or to diffuse to a short distance, which requires a high concentration of quencher molecules and/or long lifetimes of the excited donor or acceptor, which cannot always be arranged. The problem can partly be avoided by linking the donor and acceptor moieties covalently by a single bond, molecular chain or chains, or rigid bridge, forming D-A dyads. The covalent combination of porphyrin or phthalocyanine donors with an efficient electron acceptor, e.g. fullerene, has a two-fold effect on the electron transfer properties. Firstly, the electronic systems of the D-A pair result in a formation of an exciplex intermediate upon excitation both in solutions and in solid phases. The formation of the exciplex accelerates the ET rate, which was found to be as fast as >10(12) s(-1). Secondly, the total reorganization energy can be as small as 0.3 eV, even in polar solvents, which allows nanosecond lifetimes for the charge separated (CS) state. Molecular assemblies can form solid heterogeneous, but organized systems, e.g. molecular layers. This results in more complex charge separation and recombination dynamics. A distinct feature of the ET in organized assemblies is intermolecular interactions, which open a possibility for a charge migration both in the acceptor and in the donor layers, after the primary intramolecular exciplex formation and charge separation in the D-A dyad. The intramolecular ET is fast (35 ps) and efficient, but the formed interlayer CS states have lifetimes in microsecond or even second time domain. This is an important result considering possible applications.  相似文献   

5.
A structurally simple Schiff base N-benzyl-(3-hydroxy-2-naphthalene) (NBHN32) has been synthesized and characterized by (1)H NMR, (13)C NMR, and DEPT spectroscopy. The photophysical behaviour of NBHN32 in response to the presence of various transition metal cations has been explored by means of steady-state absorption, emission and time-resolved emission spectroscopy techniques. Efficient through space intramolecular photoinduced electron transfer (PET) between the naphthalene fluorophore and the imine group has been argued for extremely low fluorescence yield of NBHN32 compared to the parent molecule 3-hydroxy-2-naphthaldehyde (HN32) containing the same fluorophore but lacking the receptor moiety. Transition metal ion-induced emission enhancement is thus addressed on the lexicon of perturbation of the PET by the metal ions. Apart from fluorescence enhancement, transition metal ion imparts remarkable shift of the emission maxima of NBHN32, which is another unique aspect on the proposed ability of NBHN32 to function as a fluorescence chemosensor.  相似文献   

6.
A series of donor-substituted 1,3,5-triaryl-2-pyrazoline fluorophores were structurally characterized by X-ray analysis, and their photophysical properties studied by steady-state absorption and emission spectroscopy. The photoinduced electron-transfer thermodynamics of the derivatives was estimated on the basis of the spectroscopic data and redox potentials of the fluorophores. The aryl substituents in the 1- and 3-position of the pyrazoline ring influence the photophysical properties of the fluorophores in distinctly different ways. The excited-state equilibrium energy DeltaE(00) is primarily influenced by changes of the substituent in the 1-position, whereas the reduction potential of the fluorophore is essentially determined by the 3-aryl group. Density functional calculations were used to probe the electronic structure and energy ordering of the emissive and the electron-transfer state. The results from the computational analysis agree qualitatively well with the experimental data. In addition, we have evaluated a water soluble pyrazoline derivative in vivo as a potential intracellular pH probe. Membrane permeability, low toxicity, and high quantum yield render the fluorophore attractive for biological applications.  相似文献   

7.
在芴苯结构主链中引入苯并噻唑作为电子受体、侧链上引入N,N-二丁基苯胺作为电子给体,通过Suzuki反应制备了新型交叉共轭聚合物P1,同时合成主链中不含苯并噻唑的芴苯类共聚物P2作为对比;对两者的化学结构和光物理性质进行了表征,并研究了聚合物对离子的光学传感性能.实验和模拟计算结果均表明,P1中存在着强的分子内电荷转移效应;引入电子给体和受体(D-A)能够有效地调控交叉共轭聚合物的光学特性,这种D-A型交叉共轭聚合物是一类潜在的具有荧光增强性能的化学传感材料.  相似文献   

8.
Two highly selective OFF-ON green emitting fluorescent thiol probes (1 and 2) with intense absorption in the visible spectrum (molar extinction coefficient ε is up to 73?800 M(-1) cm(-1) at 509 nm) based on dyads of BODIPY (as electron donor of the photo-induced electron transfer, i.e.PET) and 2,4-dinitrobenzenesulfonyl (DNBS) (as electron acceptor of the PET process) were devised. The single crystal structures of the two probes were determined. The distance between the electron donor (BODIPY fluorophore) and the electron acceptor (DNBS) of probe 2 is larger than that of probe 1, as a result the contrast ratio (or the PET efficiency) of probe 2 is smaller than that of probe 1. However, fluorescence OFF-ON switching effects were observed for both probe 1 and probe 2 in the presence of cysteine (the emission enhancement is 300-fold for probe 1 and 54-fold for probe 2). The fluorescence OFF-ON sensing mechanism is rationalized by DFT/TDDFT calculations. We demonstrated with DFT calculations that DNBS is ca. 0.76 eV more potent to accept electrons than the maleimide moiety. The probes were used for fluorescent imaging of cellular thiols.  相似文献   

9.
We have synthesized A-D-A-type linear chain chromophores based on oligo(phenylene vinylene) as an electron donor (D) and several electron/energy acceptors (A), which are linked by an alkyl spacer with various lengths and are processed for a helical encapsulation with amylose. Photoinduced electron/energy transfers (eT/ET) of the chromophores are investigated in the presence and absence of the helical encapsulation with respect to D-A distance. Fluorescence intensity of the free chromophores is unusually small, not due to the advancement of eT/ET but most likely to self-quenching by aggregation and/or conformational flexibility in solution. By contrast, the helically encapsulated chromophores exhibit highly efficient eT/ET over a long D-A distance and a well-defined distance effect depending on the acceptor strength.  相似文献   

10.
In this communication we have reported the steric effect on the fluorescence quenching rate constants of the electron transfer (ET) process. We have done a comparative study using donor (D)-acceptor (A) systems with different exergonicity (-deltaG(f)). Different carbazole derivatives (CZ): 1,4-dicyanobenzene (DCB) systems (-deltaG(f) = 0.7-0.8 eV) were found to be among those limiting systems that show a clear-cut steric dominance in the process of fluorescence quenching. It is known that with increasing exergonicity the ET distance increases and hence steric dependence becomes insignificant. On the other hand, with decreasing exergonicity the ET distance decreases and a pronounced steric dominance should be observed. However, in the D-A systems having lower exergonicity compared to CZ-DCB systems, this steric dominance is observed only in polar medium. In non-polar medium due to exciplex formation the D-A distance effectively becomes much longer and therefore no steric dominance is observed.  相似文献   

11.
We demonstrate a redox-active, crystalline donor–acceptor (D-A) assembly in which the electron transfer (ET) process can be reversibly switched. This ET process, induced by a guest-responsive structural transformation at room temperature, is realized in a porous, metal–organic framework (MOF), having anthracene (D)–naphthalenediimide (A) as struts. A control MOF structure obtained by a solvent-assisted linker exchange (SALE) method, replacing an acceptor strut with a neutral one, supported the switchable electronic states in the D-A MOF. Combined investigations with X-ray diffraction, spectroscopy, and theoretical analyses revealed the dynamic metal paddle-wheel node as a critical unit for controlling structural flexibility and the corresponding unprecedented ET process.  相似文献   

12.
A series of new fluorescent Zinpyr (ZP) chemosensors based on the fluorescein platform have been prepared and evaluated for imaging neuronal Zn(2+). A systematic synthetic survey of electronegative substitution patterns on a homologous ZP scaffold provides a basis for tuning the fluorescence responses of "off-on" photoinduced electron transfer (PET) probes by controlling fluorophore pK(a) values and attendant proton-induced interfering fluorescence of the metal-free (apo) probes at physiological pH. We further establish the value of these improved optical tools for interrogating the metalloneurochemistry of Zn(2+); the novel ZP3 fluorophore images endogenous stores of Zn(2+) in live hippocampal neurons and slices, including the first fluorescence detection of Zn(2+) in isolated dentate gyrus cultures. Our findings reveal that careful control of fluorophore pK(a) can minimize proton-induced fluorescence of the apo probes and that electronegative substitution offers a general strategy for tuning PET chemosensors for cellular studies. In addition to providing improved optical tools for Zn(2+) in the neurosciences, these results afford a rational starting point for creating superior fluorescent probes for biological applications.  相似文献   

13.
A new fluorescent probe for lead ions, p-nitrophenyl 3H-phenoxazin-3-one-7-yl phosphoric acid (NPPA), has been synthesized by linking resorufLn (serving as a fluorophore and electron acceptor) to p-nitrophenol (serving as a fluorescence quencher and electron donor) through phosphodiester bonds. When NPPA was irradiated with light, intramolecular fluorescence self-quenching took place due to the PET (photoinduced electron transfer) from the donor to the acceptor. However, upon addition of Pb^Ⅱ, the phosphate ester bonds in the probe were cleaved and the fluorophore was released, accompanying the retrievement of fluorescence.  相似文献   

14.
In this work, we report on the Photoinduced Electron Transfer (PET) reaction between a donor (adenine analogue) and an acceptor (3-methoxychromone dye, 3MC ) in the context of designing efficient fluorescent probes as DNA sensors. Firstly, Gibbs energy was investigated in disconnected donor–acceptor systems by Rehm-Weller equation. The oxidation potential of the adenine derivative was responsible for exergonicity of the PET reaction in separated combinations. Then, the PET reaction in donor-π-acceptor conjugates was investigated using steady-state fluorescence spectroscopy, acid-mediated PET inhibition and transient absorption techniques. In conjugated systems, PET is a favorable pathway of fluorescent quenching when an electron-rich adenine analogue ( d7A ) was connected to the fluorophore ( 3MC ). We found that formation of ground-state complexes even at nm concentration range dominated the dye photophysics and generated poorly emissive species likely through intermolecular PET from d7A to 3MC . On the other hand, solution acidification disrupts complexation and turns on the dye emission. Bridging an electron-poor adenine analogue with high oxidation potential ( 8 d7A ) to 3MC presenting low reduction potential is another alternative to prevent complex formation and produce highly emissive monomer conjugates.  相似文献   

15.
Room temperature phosphorescence (RTP) materials are characterized with emission after removing the excitation source. Such long-lived emission feature possesses great potential in biological fluorescence imaging because it enables a way regarding temporal dimension for separating the interference of autofluorescence and common noises typically encountered in conventional fluorescence imaging. Herein, we constructed a new type of mesoporous silica nanoparticles (MSNs)-based composite nanoparticles (NPs) with dual-color long-lived emission, namely millisecond-level green phosphorescence and sub-millisecond-level delayed red fluorescence by encapsulating a typical RTP dye and Rhodamine dye in the cavities of the MSNs with the former acting as energy donor (D) while the latter as acceptor (A). Benefiting from the close D-A proximity, energy match between the donor and the acceptor and the optimized D/A ratio in the composite NPs, efficient triplet-to-singlet Förster resonance energy transfer (TS-FRET) in the NPs occurred upon exciting the donor, which enabled dual-color long-lived emission. The preliminary results of dual-color correlation imaging of live cells based on such emission feature unequivocally verified the unique ability of such NPs for distinguishing the false positive generated by common emitters with single-color emission feature.  相似文献   

16.
Based on donor (D)-acceptor (A) biphenyl (b) type molecules, a family of fluorescent reporters with integrated acceptor receptors and noncoordinating and coordinating donor substituents of varying strength has been designed for ratiometric emission sensing and multimodal signaling of metal ions and protons. In part 2 of this series on such charge transfer (CT) operated mono- and bifunctional fluorescent devices, the cation coordination behavior of the sensor molecules bpb-R equipped with a proton- and cation-responsive 2,2':6',2' '-terpyridine (bp) acceptor and either amino-type donor receptors (R = DMA, A15C5 = monoaza-15-crown-5) or nonbinding substituents (R = CF(3), H, OMe) is investigated employing the representative metal ions Na(I), Ca(II), Zn(II), Hg(II), and Cu(II) and steady-state and time-resolved fluorometry. The bpb-R molecules, the spectroscopic behavior and protonation behavior of which have been detailed in part 1 of this series, present rare examples for CT-operated bifunctional fluorescent probes that can undergo consecutive and/or simultaneous analyte recognition. The analyte-mediated change of the probes' intramolecular CT processes yields complexation site- and analyte-specific outputs, i.e., absorption and fluorescence modulations in energy, intensity, and lifetime. As revealed by the photophysical studies of the cation complexes of these fluoroionophores and the comparison to other neutral and charged D-A biphenyls, the spectroscopic properties of the acceptor chelates of bpb-R and A- and D-coordinated bpb-R are governed by CT control of an excited-state barrier toward formation of a forbidden charge transfer state, by the switching between analytically favorable anti-energy and common energy gap law type behavior, and by the electronic nature of the ligated metal ion. This accounts for the astonishingly high fluorescence quantum yields of the acceptor chelates of bpb-R equipped with weak or medium-sized donors and the red emission of D- and A-coordinated bpb-R observed for nonquenching metal ions.  相似文献   

17.
A Singh  WT Yip  RL Halterman 《Organic letters》2012,14(16):4046-4049
Fluorescence-on sensors typically rely on disrupting photoinduced electron transfer quenching of the excited state through binding the electron donor. To provide a more general fluorescence-on signaling unit, a quencher-fluorophore dyad has been developed in which quenching by electron transfer to a tethered viologen acceptor can be disrupted through complexation of the viologen by cucurbit[7]uril (CB7). Dyads of benzyl viologen-rhodamine B or a BODIPY fluorophore gave upon CB7 complexation 14- and 30-fold fluorescence enhancement, respectively.  相似文献   

18.
Tunable dual‐analyte fluorescent molecular logic gates (ExoSensors) were designed for the purpose of imaging select vesicular primary‐amine neurotransmitters that are released from secretory vesicles upon exocytosis. ExoSensors are based on the coumarin‐3‐aldehyde scaffold and rely on both neurotransmitter binding and the change in environmental pH associated with exocytosis to afford a unique turn‐on fluorescence output. A pH‐functionality was directly integrated into the fluorophore π‐system of the scaffold, thereby allowing for an enhanced fluorescence output upon the release of labeled neurotransmitters. By altering the pH‐sensitive unit with various electron‐donating and ‐withdrawing sulfonamide substituents, we identified a correlation between the pKa of the pH‐sensitive group and the fluorescence output from the activated fluorophore. In doing so, we achieved a twelvefold fluorescence enhancement upon evaluating the ExoSensors under conditions that mimic exocytosis. ExoSensors are aptly suited to serve as molecular imaging tools that allow for the direct visualization of only the neurotransmitters that are released from secretory vesicles upon exocytosis.  相似文献   

19.
Several fluorescent signaling systems are built in the format fluorophore-spacer-receptor with ethylenediamine or N,N-dimethylethylenediamine as the receptor, anthracene as the fluorophore, and a methylene group as the spacer. The receptors are derivatized with different electron-withdrawing groups such as 4-nitrobenzene, 4-nitro-2-pyridine, and 2,4-dinitrobenzene, to perturb the photoinduced intramolecular electron transfer (PET) process from the nitrogen lone-pair to the fluorophore. The photophysical properties of these supramolecular systems and their fluorescence responses toward a number of quenching transition metal ions are reported. It is shown that the PET is highly efficient in the absence of a metal ion. With a metal ion input, the fluorescence can be recovered to a different extent depending on the nature of the metal and on the overall architecture of the system as well. Despite the possibility of strong interaction between the fluorophore and the metal ion, significant fluorescence enhancement is observed with quenching of paramagnetic transition metal ions. The complex stability data show that the stability constants for the metal ions showing fluorescence enhancement are of the order of 10(4) M(-1). This study shows that structurally simple fluorescent signaling systems for quenching transition metal ions can be built by maximizing the PET. It is also shown here that simple structural modification can make these systems highly specific for particular transition metal ions for potential applications in several contemporary areas of research.  相似文献   

20.
The tuning of electron affinity and secondary electron emission on diamond (100) surfaces due to cycloaddition with 1,3-butadiene is investigated by photoemission experiments and density functional theory (DFT) calculations. A significant reduction in electron affinity up to 0.7 eV and enhancement of secondary electron emission were observed after 1,3-butadiene adsorption. The lowering of vacuum level via 1,3-butadiene adsorption is supported by DFT calculations. The C-H bonds in the covalently bonded organics on diamond contribute to the enhanced secondary electron emission and reduced electron affinity in a mechanism similar to that of C-H bonds on hydrogenated diamond surfaces. This combination of strong secondary emission and low electron affinity by the organic functionalization of diamond has potential applications in diamond-based molecular electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号