首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sol-gel processing has proved to be a useful method for the preparation of a wide range of inorganic thin films. However, gelation or precipitation of coating solutions and thus limited shelf-life have been drawbacks for the industrial application of this technology.Soluble powders of various compositions can be prepared from modified metal alkoxides commonly employed in sol-gel processing. Even though these powders contain a considerable amount of organic moieties they can be stored indefinitely under ambient conditions, thus diminishing shelf life problems. Redissolution in polar organic solvents, solvent mixtures or even water yields ready-to-use coating solutions. Coating solutions for the preparation of titania (TiO2), zirconia (ZrO2) and lead zirconate titanate (PbTi x Zr1–x O3, PZT) films have been synthesized by this method. Thickness, microstructure and properties of the resulting films can be varied by modification of the solvent, the coating procedure and thermal treatment. Inorganic thin films for various applications have been prepared.  相似文献   

2.
A brief overview on two novel spray pyrolysis techniques developed recently in our laboratory, i.e. Electrostatic Spray Deposition (ESD) and Flame-Assisted Ultrasonic Spray Pyrolysis (FAUSP), is presented in this paper. Alcoholic solutions of metal salts or alkoxides are used as precursor solutions. Both techniques have been successfully applied to synthesize electroceramic materials including semiconductor TiO2, ionic conductor ZrO2, and mixed electronic-ionic conductor LiMn2O4. ESD is usually used for the fabrication of thin films with various morphologies, while FAUSP is used for the production of fine powders.  相似文献   

3.
Homogeneous xSiO2-(1−x)ZrO2 coatings have been prepared onto glass-slides, monocrystalline Si and stainless steel (AISI 304) using sols prepared via acid and basic catalysis. Zirconium tetrabutoxide (TBOZr), zirconium n-propoxide (TPZ), tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used as precursors of zirconia and silica, respectively. The different parameters involved in the synthesis procedure, as molar ratios H2O/alkoxides, NaOH/alkoxides, and sintering temperature have been analysed, correlating the stability and rheological properties of the sols. The evolution and structure of the sols and coatings have been studied by FTIR. Coatings have been prepared by dipping from acid and basic sols. Electrophoretic Deposition (EPD) technique has also been used to prepare coatings onto stainless steel from basic particulate sols in order to increase the critical thickness. A maximum thickness of 0.5 μ m was reached by both dipping and EPD process for 75SiO2: 25 ZrO2 composition. The critical thickness decreases with ZrO2 amount depending strongly of the drying conditions. Si–O–Zr bonds have been identified by FTIR, indicating the existence of mixed network Si–O–Zr in the coatings obtained by the different routes. Crystallisation of ZrO2(t) was only observed at high sintering temperature (900C) by FTIR and confirmed by DRX.  相似文献   

4.
Summary Lanthania-and yttria-stabilized zirconium oxide ceramics have been examined using High Performance Liquid Chromatography (HPLC), thermal neutron activation (NA) and X-ray Fluorescence (XRF) analyses and thus determine the stabilizer content. Ceramic powders with the composition ZrO2:x mol % La2O3 (x=5, 10, 15, 20 and 33) and ZrO2:x mol % Y2O3 (x=10, 15, 20 and 25) were prepared by the citrate and the co-precipitation techniques, respectively. The lanthanum content was determined by HPLC (x=5.09, 9.78, 14.98, 19.81 and 25.94) and NA (x=5.15, 10.32, 17.25, 21.08 and 27.97) analyses, the yttrium content by HPLC (x=8.5, 13.5, 17.9 and 22.1) and XRF (x=9.9, 15.8, 20.1 and 24.9) analyses. An experimental sequence, based on continuous dilution of ceramic powder solutions, is proposed for preparing samples for HPLC measurements. A swimming pool nuclear reactor is used for NA analysis. The quantitative determinations of yttrium and lanthanum doping levels obtained using those techniques are described.  相似文献   

5.
The formation of perovskite nanopowders of the common proton-conducting, electrolyte material Ba(Zr1−xYx)O3−δ is demonstrated by room temperature mechanosynthesis for the compositional range x=0, 0.058 and 0.148. This is achieved with a planetary ball mill at 650 rpm in zirconia vials, starting from BaO2 with ZrO2, (ZrO2)0.97(Y2O3)0.03 or (ZrO2)0.92(Y2O3)0.08 precursors, respectively. Powder X-ray diffraction (XRD) reveals the formation of the perovskite phase in the early stages of milling with phase purity being achieved after milling times of 240 min for composition x=0.058 whereas 420 min is necessary for composition x=0.148. In contrast, traces of ZrO2 are apparent in composition x=0 even after milling times of 420 min. The use of BaCO3 as precursor does not allow the formation of the perovskite phase for any composition. The perovskite crystallites are spherical in shape with an average size determined from XRD of ca. 30 nm in agreement with transmission electron microscopy observations. FTIR spectra demonstrate that contamination levels of BaCO3 in the mechanosynthesized powders are very low. The spherical shape and nanoscale of the crystallites allow densification levels that are highly competitive when compared to BaZrO3-based materials formed by alternative synthesis techniques documented in the literature.  相似文献   

6.
洪薪超  孙晶  周晨  唐娟  毕冠 《无机化学学报》2019,35(6):1059-1064
以Ga_2O_3、Y_2O_3、Cr(NO_3)_3·9H_2O为原料,柠檬酸为配位剂,通过溶胶-凝胶高温固相合成法制备出Ga_(2-2x)O_3∶2xCr~(3+)(Ga_2O_3∶xCr)与Y_3Ga_(5-5x)O_(12)∶5xCr~(3+)(YGG∶xCr)2种多晶粉体(x=0.01,0.03,0.05,0.07)。并采用X射线衍射(XRD)、红外光谱(IR)、扫描电镜(SEM)、荧光光谱(PL)对样品的结构、组成、形貌和荧光性能进行测试分析。XRD和IR分析结果显示在900℃煅烧后Ga_2O_3∶xCr和YGG∶xCr两种样品均成相。SEM照片显示Ga_2O_3∶xCr样品形貌为柱形多面体,YGG∶xCr为短棒状。PL结果显示Cr~(3+)在Ga_2O_3和YGG两种基质中的最强荧光发射峰分别位于742和740 nm,均属于Cr~(3+)的~2E-~4A_2跃迁,对比发现Cr~(3+)在YGG基质中的荧光发射强度更强,在远红光区的荧光性能更好,能满足温室照明中植物光合作用的需求。  相似文献   

7.
Cr1 – x Ti x O3+x/2, with x = 0.05,0.1 and 0.2, powders have been synthesised by an emulsion gelation route starting from aqueous chloride solutions. Gel particles were produced by de-anionisation of a water-in-oil emulsion using an immiscible organic amine solution. After calcination to produce the oxide, the powders were characterised in terms of particle size distribution, crystallinity, surface composition, particle shape, surface area, anion contamination and doping uniformity. By optimising the processing variables it has been possible to produce un-agglomerated, spherical, uniformly doped powders with a narrow particle size distribution. The mean particle size can be controlled within the range 0.3 to 3 microns and the particles are porous and nano-crystalline. The powders have been used to fabricate thick film sensor structures and show good response to combustible gases in air.  相似文献   

8.
Al2O3 and Al2−x Cr x O3 (x = 0.01, 0.02 and 0.04) powders have been synthesized by the polymeric precursors method. A study of the structural evolution of crystalline phases corresponding to the obtained powders was accomplished through X-Ray Diffraction and UV-vis spectroscopy (reflectance spectra and CIEL*a*b* color data). The obtained results allow to identify the γ-Al2O3 to α-Al2O3 phase transition. The single-phase α-Al2O3 powder was obtained after heat treatment at 1050 °C for 2 h. The results show that the green to red color transition and ruby luminescence lines observed for the powders of Al2−x Cr x O3 are related to the γ to α-Al2O3 phase transition and the temperature and time range for such transition depends on the chromium content.  相似文献   

9.
Pure and Co, Ti-substituted hexagonal barium ferrite (BaFe12O19, BaM) films were prepared by the dip-coating method from alkoxides. After repeated dipping, drying and calcining at 500°C for about 15 minutes in an oxygen atmosphere, polycrystalline films with a thickness of 1–1.8 μm on SiO2 substrates were obtained. Spectral dependencies of the Faraday rotation and the optical transmission of BaCo x Ti x Fe12−2x O19(0≤x≤0.8) films were measured in the range from 500 to 2500 nm at room temperature. The absorption coefficient did not display much structure, but specific Faraday rotation spectra of Co, Ti-ferrite films showed local maxima at 720, 1475 and 1750 nm. At those wavelengths, the magneto-optical figure of merit attains its maximum values. For comparison of the crystallization and magnetic properties, Ba(CoTi) x Fe12−2x O19 (x=0.9) powder has also been prepared by the sol-gel method.  相似文献   

10.
Chemical interactions at the phase boundaries of materials applied for the solid oxide fuel cell (SOFC) have been studied by EPMA. The chemical reactivity at the interface of Lay-xSrxMnO3/ZrO2-Y2O3 is dependent on the stoichiometry (y) and the Sr content (x) of the perovskite. Typical reaction products (zirconates) and a diffusion zone in the ZrO2–Y2O3 have been observed. The extension of cation release (Mn) is related to the increasing chemical activity of Mn oxide in the perovskite by the Sr substitution for La. The wettability of the metal/oxide interface in the anode cermet (Ni/ZrO2–Y2O3) has been found to be influenced by chemical reactions resulting from the applied reducing atmosphere with high carbon activity. The disintegration of ZrO2–Y2O3 in contact with molten Ni or Ni-Ti and Ni-Cr alloys leads to the redeposition of Y2O3-enriched oxides and also to Zr-rich intermetallic compounds and eutectics.  相似文献   

11.
An effect of some metal oxides on the polymorphic transformation of anatase into rutile and on the rate of dissociation of V2O5 in the systems V2O5-TiO2 and V2O5-TiO2-MexOy has been studied, where MexOy is SnO2, WO3, Cr2O3 or ZrO2.  相似文献   

12.
The aim of this paper was to study the synthesis and characterization of spinel-containing mullite based materials, using sol-gel techniques. Several gels were prepared, with nominal compositions 3(Al2−2xMx TixO3)·2SiO2 and 3(Al2−xMxO3)·2SiO2, with M=Ni+2 or Co+2 and 0.0≤x≤0.2, by hydrolysis and condensation of mixtures of aluminum, silicon and titanium alkoxides and nickel chloride. Dried gels were homogeneous and displayed a glass transition at around 750°C, which indicated that the system could be described as an amorphous silicoaluminate network. Crystallization pathway of gels were followed using differential thermal analysis and X-ray diffraction patterns of samples thermal treated at temperatures in the range between 800 and 1400°C. A two-phase aluminate spinel-mullite arrangement was detected at temperatures around 1200°C. The microstructure of the final product was interesting, because the minor secondary phase was homogeneously dispersed in the mullite matrix. Chemical and thermal resistance of diphasic materials were tested and the results indicate that these materials can be used as high temperature ceramic pigments.  相似文献   

13.
The formation of perovskite nanopowders of the common proton-conducting, electrolyte material Ba(Zr1−xYx)O3−δ is demonstrated by room temperature mechanosynthesis for the compositional range x=0, 0.058 and 0.148. This is achieved with a planetary ball mill at 650 rpm in zirconia vials, starting from BaO2 with ZrO2, (ZrO2)0.97(Y2O3)0.03 or (ZrO2)0.92(Y2O3)0.08 precursors, respectively. Powder X-ray diffraction (XRD) reveals the formation of the perovskite phase in the early stages of milling with phase purity being achieved after milling times of 240 min for composition x=0.058 whereas 420 min is necessary for composition x=0.148. In contrast, traces of ZrO2 are apparent in composition x=0 even after milling times of 420 min. The use of BaCO3 as precursor does not allow the formation of the perovskite phase for any composition. The perovskite crystallites are spherical in shape with an average size determined from XRD of ca. 30 nm in agreement with transmission electron microscopy observations. FTIR spectra demonstrate that contamination levels of BaCO3 in the mechanosynthesized powders are very low. The spherical shape and nanoscale of the crystallites allow densification levels that are highly competitive when compared to BaZrO3-based materials formed by alternative synthesis techniques documented in the literature.  相似文献   

14.
FeOx, TiO2, and Fe–Ti–Ox catalysts were synthesized and used in the catalytic hydrolysis of hydrogen cyanide (HCN). Nearly 100% HCN conversion was achieved at 250 °C over the Fe–Ti–Ox catalyst. TiO2 rutile was detected over TiO2, but not over Fe–Ti–Ox, which suggested that the interaction between Fe and Ti species could inhibit the TiO2 phase transition. Furthermore, the interaction between Fe and Ti species over Fe–Ti–Ox could promote the selectivity of NH3 and CO. The mechanism of hydrolysis of HCN over FeOx, TiO2, and Fe–Ti–Ox can be given as follows: HCN + H2O → methanamide → ammonium formate → formic acid → H2O + CO.  相似文献   

15.
The prospective ways of using water in sub- and supercritical states for the preparation of nanocrystal oxide catalysts Ce0.5Zr0.5O2, Ce0.1Y x Zr0.9 – x O2, Zr1 – x Y x O2, Zr1 – x In x O2, La2CuO4, supported catalysts Pd/Rh/ZrO2and Pd/Rh/TiO2, and supports CeO2, ZrO2, TiO2are discussed. The proposed technique is characterized by high productivity. It is also ecologically friendly and enables one to obtain multicomponent oxide catalysts with chemical and phase composition and properties that can be changed within large ranges. The physicochemical properties of sub- and supercritical water are discussed. A brief review of the present studies on the use of critical media in various physicochemical processes is given.  相似文献   

16.
Precious-metal catalysts (e.g., Au, Rh, Ag, Ru, Pt, and Pd) supported on transition-metal oxides (e.g., Al2O3, Fe2O3, CeO2, ZrO2, Co3O4, MnO2, TiO2, and NiO) can effectively oxidize volatile organic compounds. In this study, porous platinum-supported zirconia materials have been prepared by a “surface-casting” method. The synthesized catalysts present an ordered nanotube structure and exhibited excellent performance toward the catalytic oxidation of formaldehyde. A facile method, utilizing a boiling water bath, was used to fabricate graphene aerogel (GA), and the macroscopic 3D Pt/ZrO2-GA was modified by introducing an adjustable MOF coating by a surface step-by-step method. The unblocked mesoporous structure of the graphene aerogel facilitates the ingress and egress of reactants and product molecules. The selected 7 wt.% Pt/ZrO2-GA-MOF-5 composite demonstrated excellent performance for HCHO adsorption. Additionally, this catalyst achieved around 90 % conversion when subjected to a reaction temperature of 70 °C (T90 %=70 °C). The Pt/ZrO2-GA-MOF-5 composite induces a catalytic cycle, increasing the conversion by simultaneously adsorbing and oxidizing HCHO. This work provides a simple approach to increasing reactant concentration on the catalyst to increase the rate of reaction.  相似文献   

17.
用沉积沉淀法合成两种不同系列的CeO2-ZrO2-La2O3混合氧化物(ZrO2和La2O3沉积CeO2粒子(标记为A-x)以及CeO2和La2O3沉积ZrO2粒子(标记为B-x)),并用作Rh催化剂的载体。XRD、拉曼、TPR、XPS和O2脉冲等表征结果显示出不同的沉积顺序将导致不同的结构和氧化还原性能,且B-x具有更高的氧迁移性、储氧能力和表面Ce浓度。当其负载Rh后,Rh/B-x催化剂具有更高的NO和CO转化率及N2选择性,且Ce的最佳含量为50at%。这可能归因于Rh负载于富铈表面形成更多有利于NO分解的表面Ce3+活性位。  相似文献   

18.
In order to obtain a catalyst support with a high surface area, ZrO2 and ZrO2-Y2O3 were prepared by the hydrolytic decomposition of the corresponding isopropoxide dissolved in benzene. The hydrolysis was carried out at 80°C using an excess amount of distilled water in flowing dry nitrogen. The precipitates thus obtained were dried at 100°C followed by calcination at 500°C in air or nitrogen for 1 h. The specific surface areas for both of the ZrO2 and ZrO2-Y2O3 increased with increasing amount of water added for hydrolysis, and the surface areas for ZrO2-Y2O3 increased with increasing yttrium content. A ZrO2 having a surface area of 130 m2/g was produced, and a stabilized tetragonal ZrO2 with 15 mol% Y3+ having a surface area of 200 m2/g was produced. Furthermore, despite the difference in the ZrO2 and ZrO2-Y2O3 crystal structures, the lattice-strain of ZrO2 has been unequivocally related to the surface area.  相似文献   

19.
A review is made of progress on the sol-gel processing of dense insulating electroceramics by polymeric condensation routes. Up until the past ten years, powders and porous coatings were principally made for optical and conductive applications. Much effort was expended on silica (SiO2) and silicate-based systems. Recently, these approaches have been extended to non-silicate systems [1]. In this paper information is presented for the powderless processing of selected electroceramics in thin-layer form. Materials include PbTiO3, BaTiO3, Ba1–x Pb x TiO3, PbZrO3, Pb(Zr1–y Ti y )O3 and (Pb1–x La x )(Zr1–y Ti y )O3 which find applications in ceramic capacitors, piezoelectric transducers and electrooptic modulators. The approach is to avoid powders, and the attendent problems of powder handling, flow, packing, etc., and make use of polymerization condensation reactions to form extended networks with chemical linkage. Data are reported for the synthesis and low temperature processing routes for amorphous and polycrystalline ceramics.  相似文献   

20.
采用密度泛函理论研究了ZrO2负载的Ru基、Rh基以及Re改性的Rh基、Ir基催化剂上甘油氢解生成1,2-丙二醇和1,3-丙二醇的热力学过程, 重点考察了ReOx调变催化剂活性和选择性的作用机制. 结果表明, Ru/ZrO2和Rh/ZrO2催化剂上甘油分解经由脱水-加氢反应途径, 1,2-丙二醇的生成是热力学有利过程, 其中Ru基催化剂活性更高. 在Re修饰的Rh基和Ir基催化剂上, 反应遵循直接氢解机理, 其中金属表面解离的氢原子进攻ReOx团簇上与醇盐紧邻的C-O键是催化甘油转化为丙二醇最核心的步骤. ReOx-Rh/ZrO2催化剂上1,2-丙二醇为主要产物, 并伴随1,3-丙二醇的生成, ReOx的修饰则显著提高了Ir/ZrO2催化剂上1,3-丙二醇选择性. 与单金属催化剂上发生的间接氢解机理相比, 修饰催化剂上1,3-丙二醇选择性的提高可主要归因于Rh(Ir)-Re协同催化的直接氢解反应过程, 其中羟基化铼官能团有利于末端醇盐中间体的生成. ReOx-Ir/ZrO2催化剂上较大的Ir-Re团簇使得末端金属醇盐的立体优选性比次级醇盐更为突出, 从而具有最高的1,3-丙二醇选择性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号