首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Microwave absorption properties of composite powders with low density   总被引:1,自引:0,他引:1  
The composites of barium ferrite coated on hollow ceramic microspheres were prepared using sol-gel technique. The crystal structure, morphology and microwave absorption properties of composite powders with different weight ratio of microspheres were studied with XRD, EDS, FESEM and vector network analyzer. The results show that the microwave absorption properties of composite powders are greatly improved. The maximum microwave loss of composite powders reaches 31 dB with an amount of 50 wt.% microspheres, and its density is only about 1.80 g/cm3. The effect of hollow ceramic microspheres on the microwave absorption property is also discussed.  相似文献   

2.
Fe-Ni-BaTiO3复合材料的介电行为及其机理研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用金属铁、镍(Fe与Ni保持mol比为22∶78不变)与钛酸钡复合,在保护气氛下成功烧结制备了高介电常数Fe-Ni-BaTiO3复合陶瓷材料,并研究了该复合材料的电导和介电性能及其物理机理.分析结果表明,由于渗流效应,随着陶瓷中金属含量的增加,材料经历了绝缘体—导体突变.同时,在渗流阈值附近,材料的介电常数有了极大的提高.当金属体积含量为0.23时,即在绝缘体向导体转变的渗流阈值附近,复合材料的介电常数达到了22000,为同条件下制备的纯钛酸钡陶瓷体介电常数的12倍,同时材料的介电 关键词: 3')" href="#">Fe-Ni-BaTiO3 渗流理论 介电性能 Maxwell-Wagner效应  相似文献   

3.
In this work carbonyl iron/La0.6Sr0.4MnO3 composites were prepared to develop super-thin microwave absorbing materials. The complex permittivity, permeability and microwave absorption properties are investigated in the frequency range of 8-12 GHz. An optimal reflection loss of −12.4 dB is reached at 10.5 GHz with a matching thickness of 0.8 mm. The thickness of carbonyl iron/La0.6Sr0.4MnO3 absorber is thinner, compared with conventional carbonyl iron powders with the same absorption properties. The bandwidth with a reflection loss exceeding −7.4 dB is obtained in the whole measured frequency range with the thickness of 0.8 mm. The excellent microwave absorption properties are attributed to a better electromagnetic matching established by the combination of the enhanced dielectric loss and nearly invariable magnetic loss with the addition of La0.6Sr0.4MnO3 nanoparticles in the composites. Our work indicates that carbonyl iron/La0.6Sr0.4MnO3 composites may have an important application in wide-band and super-thin electromagnetic absorbers in the frequency range of 8−12 GHz.  相似文献   

4.
Microwave absorbing materials filled with BaTiO3 and carbonyl iron (CI) particles with various weight fractions (BaTiO3/CI particles=100/0 to 0/100) are investigated. The dielectric and magnetic properties of the absorbers can be tuned by changing the weight ratio of BaTiO3/CI particles in the frequency range of 2-18 GHz. Numerical simulations are also performed to design a single-layer and double-layer absorber. The minimum reflection loss of the composite filled with 20 wt% BaTiO3 and 60 wt% CI particles at 2.0 mm thickness can be reached to −42 dB at 4.1 GHz. With the weight ratio of CI particles in the composite increased, the microwave absorption peak shifted to the lower frequency region. By using a double-layer absorber structure, the microwave absorption performance of the absorber is enhanced. The result shows that the total thickness of the absorber can be reduced below 1.4 mm by using a matching layer filled with 50 wt% BaTiO3, and an absorption layer filled with 60 wt% BaTiO3 and 20 wt% CI particles, whereas the reflection loss below −10 dB can be obtained in the frequency range of 10.8-14.8 GHz and the minimum reflection loss of −59 dB can be obtained at 12.5 GHz.  相似文献   

5.
Composite absorbers made from 66 wt% carbonyl iron and 34 wt% low melting point glass powder were prepared by a pressureless sintering technique in a nitrogen atmosphere. Apparent porosity and bending strength of the as-prepared composites were investigated. The microstructure, heat resisting properties and electromagnetic properties were characterized by scanning electron microscopy, thermal gravimetric analysis–differential scanning calorimetry and vector network analyzer. The results show that the carbonyl iron/glass composite absorbers were difficult to densify. As the sintering temperature and soaking time increased, the apparent porosity first decreased and then increased, whereas the bending strength showed the opposite change. The composite absorber sintered at 520 °C for 40 min achieved the minimum apparent porosity of 13.08% and the highest bending strength of 52 MPa. Compared to the carbonyl iron/silicone rubber absorber, the carbonyl iron/glass composite absorber exhibited better heat resisting properties, and the initial oxidation temperature was increased about 200 °C. The composite absorber with a thickness of 1.25 mm showed a good microwave absorbing property in 8–12 GHz.  相似文献   

6.
The development of nanosized materials is a subject of considerable interest both for understanding of the fundamental properties of magnetic materials for new technological applications. Polyaniline, composites Fe3O4/(PANI) with conducting, magnetic and electromagnetic properties with different amounts of Fe3O4 were successfully prepared. The samples were structurally characterized by scanning electron microscopy (SEM), X-ray diffraction and transmission electron microscopy (TEM) and magnetically, with a superconducting quantum interference device (SQUID) magnetometer. In order to explore microwave-absorbing properties in X-band, the composite nanoparticles were mixed with an epoxy resin to be converted into a microwave-absorbing composite. Microwave behavior with different Fe3O4/(PANI)-epoxy resin ratio was studied using a microwave vector network analyzer (VNA) in the range 7.5 to 13 GHz. For a constant thickness of 1.5 mm, absorption increases with the magnetite contents in the composites and in the oriented samples by the application of a magnetic field.  相似文献   

7.
Polyaniline (PANI)/TiO2 composite is prepared by in situ polymerization of polyaniline on the surface of TiO2 template obtained by the sol-gel process via cotton template. The TiO2 microbelts are prepared by sol-gel method using the absorbent cotton as template for the first time. Then the TiO2 microtubules are used as template for the preparation of polyaniline/TiO2 composites. The structure, morphology and properties of the composites are characterized with scanning electron microscope (SEM), IR, Net-wok Analyzer. A possible formation mechanism of TiO2 microtubules and polyaniline/TiO2 composites has been proposed. The effect of the mol ratio of polyaniline/TiO2 on the microwave loss properties and photocatalysis properties of the composites is investigated.  相似文献   

8.
The iron/titanium-oxide composite particles have been prepared using “in-situ” hydrogen-thermal reduction method. The composites were characterized by X-ray diffraction, physical property measurement system and Mössbauer spectroscopy. The powder X-ray diffraction patterns reveal the presence of crystalline α-iron and titanium-oxide (FeTiO3/TiO2). The Mössbauer spectra of powders have been measured at room temperature, which indicated that the α-iron and the high-spin iron(II/III) components were observed. The complex permittivity and permeability of the composites have been measured using vector network analyzers. Reflection loss of the iron/titanium-oxide composite powders dispersing in epoxy resin has been calculated using measured values of complex permittivity and permeability in the frequency range of 2–12 GHz. The maximum reflection loss of ?36 dB was observed at 5.0 GHz. This study shows the possibility to obtain the novel dielectric and magnetic based microwave absorbers.  相似文献   

9.
The composition effects on the dielectric and magnetic properties of NiCuZn-BaTiO3 composites fired at low temperature were investigated. The coexistence of perovskite BaTiO3 and spinel ferrite phases in the composites were observed; no significant chemical reactions occurred between BaTiO3 and NiCuZn ceramics during sintering. The nanosized BaTiO3 powders favored a decrease in grain size. The saturation magnetization, remanent magnetization and real permeability continuously decreased with increasing BaTiO3 content. And the real permittivity continuously increased with the BaTiO3 content. The Q-factor (quality factor) exhibited relatively high values with 20-30 wt% BaTiO3. All composite materials exhibited a low dielectric loss below 100 MHz. Synthetically considerations, the composites with 20-30 wt% BaTiO3 could obtain relatively high real permeability and real permittivity values, and the magnetic and dielectric losses were relatively low, so they were the best candidates to produce LC-integrated chip elements.  相似文献   

10.
Silicon carbide particles reinforced nickel-cobalt-phosphorus matrix composite coatings were prepared by two-step electroless plating process (pre-treatment of sensitizing and subsequent plating) for the application to lightweight microwave absorbers, which were characterized by scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), vibrating sample magnetometer (VSM) and vector network analyzer, respectively. The results show that Ni-Co-P deposits are uniform and mixture crystalline of α-Co and Ni3P and exhibit low-specific saturation magnetization and low coercivity. Due to the conductive and ferromagnetic behavior of the Ni-Co thin films, high dielectric constant and magnetic loss can be obtained in the microwave frequencies. The maximum microwave loss of the composite powder less than −32 dB was found at the frequency of 6.30 GHz with a thickness of 2.5 mm when the initial atomic ratio of Ni-Co in the plating bath is 1.5.  相似文献   

11.
Polymer ceramic composites using a polymer binder, nanosized BaTiO3 and metal particles were developed for radiation shielding in the microwave region. From X-ray Diffraction (XRD) the crystallinity and nanosize of BaTiO3 was confirmed in the composite. Interesting changes in Differential Scanning Calorimetry (DSC) were observed before and after ball milling of BaTiO3. Shielding Efficiency (SE) of microwave radiation has been measured from transmitted fraction (TF) of electromagnetic waves (EM) at different frequencies. The changes in TF were assigned to reflection and absorption of EM waves in different composites.  相似文献   

12.
Modifying the proportion of the base composition by substituting with suitable dopents and improving the preparation conditions is expected to change the performance of composites. In the present study, 0.5(Ni0.5Zn0.5Fe2O4)/0.5(BaTiO3) composite was prepared by, the conventional ceramic technique and the citrate method. Ceramic particles, when prepared via different routes, would demonstrate different properties, even with the same starting compositions. With the help of X-ray diffraction, scanning electron microscope (SEM), magnetic properties, and electric properties of the composites have been compared. A critical comparison of those methods is needed to make the best choice for given boundary conditions of targeted eventual material properties, raw materials, investment, processing and waste disposal costs.  相似文献   

13.
Chrysanthemum-like ZnO nanowire clusters with different Sb-doping concentrations were prepared by using the hydrothermal process. The microstructures, morphologies, and dielectric properties of the as-prepared products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), field emission environment scanning electron microscope (FEESEM), and microwave vector network analyzer respectively. The results indicate that the as-prepared products are Sb-doped ZnO single crystallines with hexagonal wurtzite structure, the flower bud saturation degree Fd is obviously different from that of the pure ZnO nanowire clusters, the good dielectric loss property is found in Sb-doped ZnO products with low density, and the dielectric loss tangent tanδ e increases with the increase of the Sb-doping concentration in a certain concentration range.  相似文献   

14.
BaFe12O19 nanowire arrays having single magnetic domain size (≤460 nm) in anodic aluminum oxide (AAO) templates were prepared by sol-gel and self-propagating high-temperature synthesis techniques. The diameter of the nanowire arrays is approximately 70 nm and the length is about 2-4 μm. The specimens were characterized using X-ray diffraction, vibrating sample magnetometer, field emission scan electron microscope, atomic force microscopy and microwave vector network analyzer. The magnetic properties of BaFe12O19 nanowire arrays embedded in AAO templates were measured by VSM with a field up to 1274 KA/m at room temperature. The results indicate that the nanowire arrays exhibit large saturation magnetization and high coercivity in the range of 6000 Oe and an obvious magnetic anisotropy with the easy magnetizing axis along the length of the nanowire arrays, probably due to the shape anisotropy and magneto-crystalline anisotropy. Finally the microwave absorption properties of the nanowires were discussed.  相似文献   

15.
Ternary composites of BiFeO3/graphene nanoplatelet (GNP)/epoxy composites were synthesized and its electromagnetic and microwave absorbing properties were studied; the main absorbing mechanism was illustrated. The phase, microstructure, and microwave absorbing properties were characterized by X-ray diffraction, scanning electron microscope, and vector network analyzer. The results indicated that the BiFeO3 was successfully synthesized and the GNP was uniformly distributed in the composites, and the complex permittivity of BiFeO3/GNP/epoxy composites increased with increasing the GNP content due to the interface polarization and conductance loss. The minimum reflection loss value was reached to ??45 dB at 9.25 GHz with the thickness of 1.4 mm when the GNP content was 2 wt%, and also the absorbing properties of (BiFeO3+GNP)/epoxy composites can be tailored by the GNP content and composite thickness, which may be used as a kind of absorbing materials with good absorbing performance and low density.
Graphical abstract The reflection loss curves and the simulated matching thickness of GNP-BiFeO3-epoxy composites with 2 wt% GNP content. As can be seen, the minimum reflection loss value was reached to ??45 dB at 9.25 GHz with the thickness of 1.4 mm, and also the quarter-wavelength matching theory can be used to illustrate the good absorbing properties of GNP-BiFeO3-epoxy composites.
  相似文献   

16.
The (BaFe12O19+BaTiO3)/polyaniline composite was synthesized by in situ polymerization and introduced into epoxy resin and polyethylene to be a microwave and infrared absorber. The spectroscopic characterizations of the formation processes of (BaFe12O19+BaTiO3)/polyaniline composite were examined using Fourier transform infrared, ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. Microwave absorbing properties were investigated by measuring reflection loss in 2-18 and 18-40 GHz microwave frequency range using the free space method. Thermal extinction measurements in the 3-5 and 8-12 μm were done to evaluate the shielding effectivity of infrared. The results showed that a significant absorption frequency range shifting and thermal extinction could be obtained by adding polyaniline to the BaFe12O19+BaTiO3 blend.  相似文献   

17.
To improve the microwave absorption ability, hybrid particles containing both dielectric loss of BaTiO3 and magnetic loss of Ni were fabricated via electroless Ni plating on BaTiO3 particles. A continuous Ni coating was successfully covered on the surface of the BaTiO3. The effect of the Ni content on complex permittivity, complex permeability, and microwave absorption properties of BaTiO3/Ni hybrid particles was investigated. The real (?′) and imaginary (?″) parts of complex permittivity as well as imaginary part of complex permeability (μ″) were found to increase with an increase in Ni content, while the variation of the real part of complex permeability (μ′) with Ni content was non-linear. The microwave absorption performances could readily be tuned base on the changing Ni content of the hybrid particles. The optimal absorption performances were attained when the content of Ni reached 38.9 wt% in hybrid particles.  相似文献   

18.
A new type of Co-Ni-P coated strontium ferrite nanocomposite was prepared with electroless plating enhanced by ultrasonic wave at room temperature. The plating process was studied carefully. The morphology, crystal structure and microwave absorption properties of the Co-Ni-P coated powder were studied with field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDX) and vector network analyzer. The results show that the strontium ferrite powder was successfully coated with Co-Ni-P alloy and possesses excellent microwave absorption properties. The maximum microwave loss of the composite powder reaches −44.12 dB. The bandwidth with the loss above −10 dB exceeds 13.8 GHz.  相似文献   

19.
La1−xAgxMnO3 perovskites with different doping Ag-content were prepared by the sol–gel method. The electromagnetic characteristics and microwave loss behavior of these ion-doped rare-earth manganites were studied in the 2–18 GHz frequency range. The microstructure and morphology of the samples were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The complex permittivity spectra, the complex permeability spectra and microwave reflection loss were measured by a microwave vector network analyzer system. The XRD patterns show that the crystalline perovskite main phase ABO3 is formed and impurity phases disappear when calcined at 1100 °C, and Ag metal as an impurity phase appears when excessive Ag+ is doped. The SEM image indicates that many of the La0.85Ag0.15MnO3 particles are fiber-like or ellipsoidal. Magnetic loss and dielectric loss coexist and cooperate in microwave attenuation by moderate substitution of Ag+ for La3+. The microwave absorption property of the La0.85Ag0.15MnO3 sample is enhanced with the bandwidth below −10 dB at about 6 GHz and the peak value of reflection loss is near −25.0 dB at the layer thickness of 2 mm.  相似文献   

20.
Nickel particles with submicron size are prepared by using the solvothermal method. These spheres are then coated with a layer of MnO2 using the soft chemical method. The microstructure is characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Energy x-ray dispersive spectrometry and high-resolution images show that the granular composites have a classical core/shell structure with an MnO2 superficial layer,no more than 10 nm in thickness. The hysteresis measurements indicate that these submicron-size Ni composite powders have small remanence and moderate coercivity. The electromagnetic properties of the powders measured by a vector network analyzer in a frequency range of 2-18 GHz are also reported in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号