首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated electrical- and magneto-resistance control in magnetite (Fe3O4) nanoparticle sinter (MNPS) by the regulation of heat treatment (HT) temperature. MNPS was produced from hematite (α-Fe2O3) nanoparticles (HNP’s) using a deoxidization reaction. The average size of HNP was 30 nm, and HT was carried out between 400 and 800 °C. X-ray diffraction, magnetization, electrical resistivity (ER), and magneto-resistivity (MR) measurements were performed at temperatures ranging from 5 to 300 K. The ER and MR behaviors were considerably different at HT temperatures above and below ∼600 °C. After HT below ∼600 °C, ER followed the Mott-type variable-range-hopping conduction, and MR showed large values over a wide temperature range. After HT above ∼600 °C, ER indicated a Verwey transition near 110 K and MR showed small values, except in the vicinity of the Verwey transition temperature. Changing the HT temperature altered the coupling between adjacent magnetite nanoparticles (MNPs) and affected the crystallinity of MNPS. Below ∼600 °C, ER and MR were dominated by grain-boundary conduction, while above ∼600 °C they were determined by inter-grain conduction. The application of a magnetic field to the grain-boundary region, which had random localized spins, caused a large enhancement in MR.  相似文献   

2.
Magnetite particles with different average diameter (Dm) suitable for magnetic fluid hyperthermia (MFH) were synthesized by controlled coprecipitation technique. In this method, the reaction pH was stabilized using the pH buffer and the average particle diameter decreased with increasing reaction pH. The size-dependent magnetic behavior of the magnetite nanoparticles was studied and the optimum size range required for magnetic fluid hyperthermia (MFH) has been arrived at. Among the samples studied, the maximum specific absorption rate of 15.7 W/g was recorded for the magnetite sample with Dm of 13 nm, when exposed to an AC magnetic field strength of 3.2 kA/m and a frequency of 600 kHz. The AC magnetic properties suggested that the size distribution of the sample was bimodal with average particle size less than ∼13 nm.  相似文献   

3.
The concept of using magnetic particles (seeds) as the implant for implant assisted-magnetic drug targeting (IA-MDT) was analyzed in vitro. Since this MDT system is being explored for use in capillaries, a highly porous (ε∼70%), highly tortuous, cylindrical, polyethylene polymer was prepared to mimic capillary tissue, and the seeds (magnetite nanoparticles) were already fixed within. The well-dispersed seeds were used to enhance the capture of 0.87 μm diameter magnetic drug carrier particles (MDCPs) (polydivinylbenzene embedded with 24.8 wt% magnetite) under flow conditions typically found in capillary networks. The effects of the fluid velocity (0.015–0.15 cm/s), magnetic field strength (0.0–250 mT), porous polymer magnetite content (0–7 wt%) and MDCP concentration (C=5 and 50 mg/L) on the capture efficiency (CE) of the MDCPs were studied. In all cases, when the magnetic field was applied, compared to when it was not, large increases in CE resulted; the CE increased even further when the magnetite seeds were present. The CE increased with increases in the magnetic field strength, porous polymer magnetite content and MDCP concentration. It decreased only with increases in the fluid velocity. Large magnetic field strengths were not necessary to induce MDCP capture by the seeds. A few hundred mT was sufficient. Overall, this first in vitro study of the magnetic seeding concept for IA-MDT was very encouraging, because it proved that magnetic particle seeds could serve as an effective implant for MDT systems, especially under conditions found in capillaries.  相似文献   

4.
Fe3O4 nanoparticle/organic hybrids were synthesized via hydrolysis using iron (III) acetylacetonate at ∼80 °C. The synthesis of Fe3O4 was confirmed by X-ray diffraction, selected-area diffraction, and X-ray photoelectron spectroscopy. Fe3O4 nanoparticles in the organic matrix had diameters ranging from 7 to 13 nm depending on the conditions of hydrolysis. The saturation magnetization of the hybrid increased with an increase in the particle size. When the hybrid contained Fe3O4 particles with a size of less than 10 nm, it exhibited superparamagnetic behavior. The blocking temperature of the hybrid containing Fe3O4 particles with a size of 7.3 nm was 200 K, and it increased to 310 K as the particle size increased to 9.1 nm. A hybrid containing Fe3O4 particles of size greater than 10 nm was ferrimagnetic, and underwent Verwey transition at 130 K. Under a magnetic field, a suspension of the hybrid in silicone oil revealed the magnetorheological effect. The yield stress of the fluid was dependent on the saturation magnetization of Fe3O4 nanoparticles in the hybrid, the strength of the magnetic field, and the amount of the hybrid.  相似文献   

5.
Magneto-optic Kerr effect (MOKE) and magnetoresistance (MR) measurements were used to measure the switching characteristics of spin-valve (SV) arrays currently being developed to trap and release superparamagnetic beads within a fluid medium. The effect of SV size on switching observed by MOKE showed that a 1 μm×8 μm SV element was found to have optimal switching characteristics. MR measurements on a single 1 μm×8 μm SV switched with either an external applied magnetic field or a local magnetic field generated by an integrated write wire (current density ranging from 106 to 107 A/cm2) confirmed the MOKE findings. The 1 μm×8 μm SV low field switching was observed to be +8 and −2 mT with two stable states at zero field; the high field switching was observed to be −18 mT. The low switching fields and the large magnetic moment of the SV trap along with our observation of minimal magnetostatic effects for dense arrays are necessary design characteristics for high-force, “switchable-magnet,” microfluidic bead trap applications.  相似文献   

6.
The borohydride reduction method was used to synthesize the Fe-based alloy nanoparticles in an aqueous medium for MR fluids. The effect of ethanol content in the reaction medium on the synthesis of Fe–Co–B nanoparticles was studied first. With increasing the ethanol content from 0 to 40 vol%, the average diameters of Fe–Co–B nanoparticles were decreased from 170 to 35 nm. The possible mechanism for the effect of ethanol has been proposed. Among the four types of Fe-based alloys particles synthesized in this work, Fe–B had the highest magnetization saturation Ms, while Ms decreased in an order of Fe–B>Fe–Co–B>Fe–Cr–B>Fe–Ni–B. A magnetic field of 3000 Oe was able to increase Ms by about 5–6% for each type of iron-based alloy. Under a magnetic field, chain structures of nanoparticles were always formed. When a strong magnetic field such as 3000 Oe was applied, the particles were “squeezed” into chains.  相似文献   

7.
The interparticle magnetic interactions of hematite (α-Fe2O3) nanoparticles were investigated by temperature and magnetic field dependent magnetization curves. The synthesis were done in two steps; milling metallic iron (Fe) powders in pure water (H2O), known as mechanical milling technique, and annealing at 600 °C. The crystal and molecular structure of prepared samples were determined by X-ray powder diffraction (XRD) spectra and Fourier transform infrared (FTIR) spectra results. The average particle sizes and the size distributions were figured out using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The magnetic behaviors of α-Fe2O3 nanoparticles were analyzed with a vibrating sample magnetometer (VSM). As a result of the analysis, it was observed that the prepared α-Fe2O3 nanoparticles did not perform a sharp Morin transition (the characteristic transition of α-Fe2O3) due to lack of unique particle size distribution. However, the transition can be observed in the wide temperature range as “a continuously transition”. Additionally, the effect of interparticle interaction on magnetic behavior was determined from the magnetization versus applied field (σ(M)) curves for 26±2 nm particles, dispersed in sodium oxalate matrix under ratios of 200:1, 300:1, 500:1 and 1000:1. The interparticle interaction fields, recorded at 5 K to avoid the thermal interactions, were found as ∼1082 Oe for 26±2 nm particles.  相似文献   

8.
Rhenium sulfide nanoparticles are associated with magnetic iron oxide through coprecipitation of iron salts with tetramethylammonium hydroxide. Sizes of the formed magnetic rhenium sulfide composite particles are in the range 5.5-12.5 nm. X-ray diffraction and energy-dispersive analysis of X-rays spectra demonstrate the coexistence of Fe3O4 and ReS2 in the composite particle, which confirm the formation of the magnetic rhenium sulfide composite nanoparticles. The association of rhenium sulfide with iron oxide not only keeps electronic state and composition of the rhenium sulfide nanoparticles, but also introduces magnetism with the level of 24.1 emu g-1 at 14 kOe. Surface modification with monocarboxyl-terminated poly(ethylene glycol) (MPEG-COOH) has the role of deaggregating the composite nanoparticles to be with average hydrodynamic size of 27.3 nm and improving the dispersion and the stability of the composite nanoparticles in water.  相似文献   

9.
Single domain magnetic CoFe2O4 nanoparticles with spinel structure were prepared by the coprecipitation method. Particles with size of 16, 20, 40 and 60 nm were synthesized by sintering the precursor at 500, 600, 800 and 900 °C, respectively. The magnetic hysteresis measurement of CoFe2O4 particles showed that particles were single domain particles with similar saturation magnetization (∼300 emu/cm3) at room temperature. The zeta potential study of suspensions (CoFe2O4-acetylacetone system) with various particle sizes showed the suspension systems had similar zeta potential values (∼40 mV). The effects of magnetic particle size on the suspension stability characterized by electrophoretic deposition yields and sediment volumes were studied. The suspension stability decreased with an increase in particle size and a flocculation threshold of particle radius a was found at 30 nm. A suspension stability theory approaching to the phenomenon was established. The theory based on the DLVO theory was developed by introducing an extra magnetic interaction force. Dormann model was adopted, in which the magnetic interactions of two spherical nanoparticles were investigated in terms of dipole-dipole interactions. Compared to DLVO, suspension's physical parameters not only zeta potential ζ and the Debye length 1/κ, but also particles' radius a brought about stable to flocculation transition in the theory.  相似文献   

10.
Magnetization and neutron diffraction studies have been performed on Ce4Sb3 compound (cubic Th3P4-type, space group I4¯3d, no. 220). Magnetization of Ce4Sb3 reveals a ferromagnetic transition at ∼5 K, the temperature below which the zero-field-cooled and field-cooled magnetization bifurcate in low applied fields. However, a saturation magnetization (MS) value of only ∼0.93μB/Ce3+ is observed at 1.8 K, suggesting possible presence of crystal field effects and a paramagnetic/antiferromagnetic Ce3+ moment. Magnetocaloric effect in this compound has been computed using the magnetization vs. field data obtained in the vicinity of the magnetic transition, and a maximum magnetic entropy change, −ΔSM, of ∼8.9 J/kg/K is obtained at 5 K for a field change of 5 T. Inverse magnetocaloric effect occurs at ∼2 K in 5 T indicating the presence of antiferromagnetic component. This has been further confirmed by the neutron diffraction study that evidences commensurate antiferromagnetic ordering at 2 K in zero magnetic field. A magnetic moment of ∼1.24μB/Ce3+ is obtained at 2 K and the magnetic moments are directed along Z-axis.  相似文献   

11.
Magnetite nanoparticles are found to assemble into randomly dispersed loose nanoscale spheres with diameters ∼300 nm in ethylene glycol in the presence of polyethylene and a small quantity of polyethyleneimine. Modern analysis methods are employed to provide structure information of the magnetic loose spheres. The ferromagnetic saturation magnetization is ∼80.0 emu g−1, and the coercive force is 209 Oe. The microwave electromagnetic parameters are measured by a vector network analyzer. The synthesized loose spheres exhibit novel microwave properties compared with the conventional Fe3O4 nanoparticles. An additional microwave loss peak appears in the Ku band, which is attributed to the loose structure.  相似文献   

12.
Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol–gel method. The catalyst precursor was fired at 450 °C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50–75 μm) and sample B (smaller than 50 μm). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of α-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing α-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50–75 μm showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 μm. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.  相似文献   

13.
Single-phase polycrystalline samples of La0.7Sr0.3Mn1-xCrxO3 with nominal composition of x=0.00, 0.20, 0.40 and 0.50 were prepared by a conventional solid-state reaction method in air. Investigations of magnetization were carried out in the temperature range 5-400 K and magnetic field range 0-8 T. It was found that the Curie temperature TC decreases with increasing x and the maximum magnetic entropy change (−ΔSM) for x=0.20 is ∼1.203 and ∼2.653 J/kg K, respectively for 2 and 6 T magnetic field near the temperature of 280 K.  相似文献   

14.
Increasing interest has been drawn to the studies of magnetic fluids due to their multiple applications from industry to medicine. However, further exploration is still required for the techniques of preparing satisfying, convenient and stable magnetic fluids. We explored characteristics of magnetic liquids prepared by employing co-precipitation techniques of hydrochloric acid (HCl) and polyethylene glycol (PEG), and the functions of HCl and PEG in the magnetic liquid. According to the improved technique, after preparing Fe3O4 by a co-precipitation method, hydrochloric acid and PEG2000 react with magnetic particles at a certain temperature to generate the anticipated magnetic nanoparticles. The process could be under an air atmosphere rather than a N2 atmosphere. Compared with traditional techniques, the magnetic nanoparticles prepared by this method have smaller size, better dispersion and stability, with the average hydrodynamic diameter adjustable between 8 and 50 nm. This study revealed that reduction of nanoparticles size is not mainly due to a [Cl] coating over the magnetic nanoparticles, but that HCl reacts with Fe3O4 particles after being heated. Meanwhile, PEG can stabilize or coat Fe3O4 nanoparticles as a dispersing and stabilizing agent.  相似文献   

15.
Magnetite Fe3O4 nanoparticles were synthesized by a co-precipitation method at different pH values. The products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electronic microscopy. Their magnetic properties were evaluated on a vibrating sample magnetometer. The results show that the shape of the particles is cubic and they are superparamagnetic at room temperature. Magnetic nanofluids were prepared by dispersing the Fe3O4 nanoparticles in water as a base fluid in the presence of tetramethyl ammonium hydroxide as a dispersant. The thermal conductivity of the nanofluids was measured as a function of volume fraction and temperature. The results show that the thermal conductivity ratio of the nanofluids increases with increase in temperature and volume fraction. The highest enhancement of thermal conductivity was 11.5% in the nanofluid of 3 vol% of nanoparticles at 40 °C. The experimental results were also compared with the theoretical models.  相似文献   

16.
Nanostructured manganese ferrites (MnFe2O4) with diameters in the range of 45–30 nm were synthesized by Ti4+ ion doping, using conventional solid-state reaction route. The substitution of Ti4+ ions created vacancies at Mn2+ sites and the coupling of ferrimagnetically active oxygen polyhedra was broken. This created nanoscale regions of ferrites. A reduction of magnetization for decreasing particle size was observed. Coercivity showed an increasing trend. This was explained as arising due to multidomain/monodomain magnetic behaviour of magnetic nanoparticles. DC resistivities of the doped specimens indicated the presence of an interfacial amorphous phase formed by the nanoparticles. Zero-field cooled and field-cooled curves from 30 nm sized particles showed a peak at TB (∼125 K), typical of superparamagnetic blocking temperature.  相似文献   

17.
Experimental and theoretical studies were carried out to investigate the spatial distribution of colloidal particles in magnetic fluids formed under the influence of magnetophoresis and gradient diffusion in a strong magnetic field. Several theoretical models, describing the equilibrium concentration profiles for rigid chain-like and quasispherical aggregates, are discussed. The experiment was made for four samples of magnetic fluids, differing in the average diameter of magnetic particles and the width of the particle size distribution. The analysis of the experimental data shows that the aggregates essentially change the concentration profile, making it nonlinear even in small (2 mm) magnetic fluid samples. Good agreement between the experimental and theoretical curves is observed in the case when the aggregates contain on the average 40-50 particles. The average diameter of single particles, calculated from the concentration profile curves, coincides with the average diameter, found from the magnetogranulometric analysis.  相似文献   

18.
Experimental studies of rheological behavior of uncoated magnetite nanoparticles (MNPs)U and polyvinyl alcohol (PVA) coated magnetite nanoparticles (MNPs)C were performed. A Co-precipitation technique under N2 gas was used to prevent undesirable critical oxidation of Fe2+. The results showed that smaller particles can be synthesized in both cases by decreasing the NaOH concentration which in our case this corresponded to 35 nm and 7 nm using 0.9 M NaOH at 750 rpm for (MNPs)U and (MNPs)C. The stable magnetic fluid contained well-dispersed Fe3O4/PVA nanocomposites which indicated fast magnetic response. The rheological measurement of magnetic fluid indicated an apparent viscosity range (0.1–1.2) pa s at constant shear rate of 20 s−1 with a minimum value in the case of (MNPs)U at 0 T and a maximum value for (MNPs)C at 0.5 T. Also, as the shear rate increased from 20 s−1 to 150 s−1 at constant magnetic field, the apparent viscosity also decreased correspondingly. The water-based ferrofluid exhibited the non-Newtonian behavior of shear thinning under magnetic field.  相似文献   

19.
Self-forming core/shell nanoparticles of magnetic metal/oxide with crystalline grain size of less than 40 nm were synthesized. The nanoparticles were highly concentrated in an insulating matrix to fabricate a nanocomposite, whose magnetic properties were investigated. The crystalline grain size of the nanoparticles strongly influenced the magnetic anisotropy field, magnetic coercivity, relative permeability, and loss factor (tan δ=μ″/μ′) at high frequency. The packing ratio of the magnetic metallic phase in the nanocomposite also influenced those properties. High permeability with low tan δ of less than 1.5% at up to 1 GHz was obtained in the case of the nanoparticles with crystalline grain size of around 15 nm with large packing ratio of the nanoparticles.  相似文献   

20.
When a uniaxial magnetic field is applied to a non-magnetic dispersive medium filled with magnetic nanoparticles, they auto-assemble into thin needles parallel to the field direction, due to the strong dipolar interaction among them. We have prepared in this way magnetically oriented nanocomposites of nanometer-size CoFe2O4 particles in a polydimethylsiloxane polymer matrix, with 10% w/w of magnetic particles. We present the characteristic magnetic relaxation curves measured after the application of a magnetic field forming an angle α with respect to the needle direction. We show that the magnetic viscosity (calculated from the logarithmic relaxation curves) as a function of α presents a minimum at α=0, indicating slower relaxation processes associated with this configuration of fields. The results seems to point out that the local magnetic anisotropy of the nanoparticles is oriented along the needles, resulting in the macroscopic magnetic anisotropy observed in our measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号