首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Justification logics are modal-like logics that provide a framework for reasoning about justifications. This paper introduces labeled sequent calculi for justification logics, as well as for combined modal-justification logics. Using a method due to Sara Negri, we internalize the Kripke-style semantics of justification and modal-justification logics, known as Fitting models, within the syntax of the sequent calculus to produce labeled sequent calculi. We show that all rules of these systems are invertible and the structural rules (weakening and contraction) and the cut rule are admissible. Soundness and completeness are established as well. The analyticity for some of our labeled sequent calculi are shown by proving that they enjoy the subformula, sublabel and subterm properties. We also present an analytic labeled sequent calculus for S4LPN based on Artemov–Fitting models.  相似文献   

2.
This paper presents a uniform and modular method to prove uniform interpolation for several intermediate and intuitionistic modal logics. The proof-theoretic method uses sequent calculi that are extensions of the terminating sequent calculus G4ip for intuitionistic propositional logic. It is shown that whenever the rules in a calculus satisfy certain structural properties, the corresponding logic has uniform interpolation. It follows that the intuitionistic versions of K and KD (without the diamond operator) have uniform interpolation. It also follows that no intermediate or intuitionistic modal logic without uniform interpolation has a sequent calculus satisfying those structural properties, thereby establishing that except for the seven intermediate logics that have uniform interpolation, no intermediate logic has such a sequent calculus.  相似文献   

3.
Non-classical negations may fail to be contradictory-forming operators in more than one way, and they often fail also to respect fundamental meta-logical properties such as the replacement property. Such drawbacks are witnessed by intricate semantics and proof systems, whose philosophical interpretations and computational properties are found wanting. In this paper we investigate congruential non-classical negations that live inside very natural systems of normal modal logics over complete distributive lattices; these logics are further enriched by adjustment connectives that may be used for handling reasoning under uncertainty caused by inconsistency or undeterminedness. Using such straightforward semantics, we study the classes of frames characterized by seriality, reflexivity, functionality, symmetry, transitivity, and some combinations thereof, and discuss what they reveal about sub-classical properties of negation. To the logics thereby characterized we apply a general mechanism that allows one to endow them with analytic ordinary sequent systems, most of which are even cut-free. We also investigate the exact circumstances that allow for classical negation to be explicitly defined inside our logics.  相似文献   

4.
We present a compact sequent calculus LKU for classical logic organized around the concept of polarization. Focused sequent calculi for classical, intuitionistic, and multiplicative-additive linear logics are derived as fragments of the host system by varying the sensitivity of specialized structural rules to polarity information. We identify a general set of criteria under which cut-elimination holds in such fragments. From cut-elimination we derive a unified proof of the completeness of focusing. Furthermore, each sublogic can interact with other fragments through cut. We examine certain circumstances, for example, in which a classical lemma can be used in an intuitionistic proof while preserving intuitionistic provability. We also examine the possibility of defining classical-linear hybrid logics.  相似文献   

5.
The goal of the paper is to develop a universal semantic approach to derivable rules of propositional multiple-conclusion sequent calculi with structural rules, which explicitly involve not only atomic formulas, treated as metavariables for formulas, but also formula set variables (viz., metavariables for finite sets of formulas), upon the basis of the conception of model introduced in (Fuzzy Sets Syst 121(3):27–37, 2001). One of the main results of the paper is that any regular sequent calculus with structural rules has such class of sequent models (called its semantics) that a rule is derivable in the calculus iff it is sound with respect to each model of the semantics. We then show how semantics of admissible rules of such calculi can be found with using a method of free models. Next, our universal approach is applied to sequent calculi for many-valued logics with equality determinant. Finally, we exemplify this application by studying sequent calculi for some of such logics.   相似文献   

6.
In previous work [15], we presented a hierarchy of classical modal systems, along with algebraic semantics, for the reasoning about intuitionistic truth, belief and knowledge. Deviating from Gödel's interpretation of IPC in S4, our modal systems contain IPC in the way established in [13]. The modal operator can be viewed as a predicate for intuitionistic truth, i.e. proof. Epistemic principles are partially adopted from Intuitionistic Epistemic Logic IEL [4]. In the present paper, we show that the S5-style systems of our hierarchy correspond to an extended Brouwer–Heyting–Kolmogorov interpretation and are complete w.r.t. a relational semantics based on intuitionistic general frames. In this sense, our S5-style logics are adequate and complete systems for the reasoning about proof combined with belief or knowledge. The proposed relational semantics is a uniform framework in which also IEL can be modeled. Verification-based intuitionistic knowledge formalized in IEL turns out to be a special case of the kind of knowledge described by our S5-style systems.  相似文献   

7.
Propositional and first-order bounded linear-time temporal logics (BLTL and FBLTL, respectively) are introduced by restricting Gentzen type sequent calculi for linear-time temporal logics. The corresponding Robinson type resolution calculi, RC and FRC for BLTL and FBLTL respectively are obtained. To prove the equivalence between FRC and FBLTL, a temporal version of Herbrand theorem is used. The completeness theorems for BLTL and FBLTL are proved for simple semantics with both a bounded time domain and some bounded valuation conditions on temporal operators. The cut-elimination theorems for BLTL and FBLTL are also proved using some theorems for embedding BLTL and FBLTL into propositional (first-order, respectively) classical logic. Although FBLTL is undecidable, its monadic fragment is shown to be decidable.  相似文献   

8.
If the Visser rules are admissible for an intermediate logic, they form a basis for the admissible rules of the logic. How to characterize the admissible rules of intermediate logics for which not all of the Visser rules are admissible is not known. In this paper we give a brief overview of results on admissible rules in the context of intermediate logics. We apply these results to some well-known intermediate logics. We provide natural examples of logics for which the Visser rule are derivable, admissible but nonderivable, or not admissible. Supported by the Austrian Science Fund FWF under projects P16264 and P16539.  相似文献   

9.
The paper settles an open question concerning Negri-style labeled sequent calculi for modal logics and also, indirectly, other proof systems which make (more or less) explicit use of semantic parameters in the syntax and are thus subsumed by labeled calculi, like Brünnler’s deep sequent calculi, Poggiolesi’s tree-hypersequent calculi and Fitting’s prefixed tableau systems. Specifically, the main result we prove (through a semantic argument) is that labeled calculi for the modal logics K and D remain complete w.r.t. valid sequents whose relational part encodes a tree-like structure, when the unique rule which contains an harmful implicit contraction—by which the condition that the premises be less complex than the conclusion is violated—is modified into a contraction-free one respecting the latter condition, thus making the proof-search space finite.  相似文献   

10.
The paper introduces semantic and algorithmic methods for establishing a variant of the analytic subformula property (called ‘the bounded proof property’, bpp) for modal propositional logics. The bpp is much weaker property than full cut-elimination, but it is nevertheless sufficient for establishing decidability results. Our methodology originated from tools and techniques developed on one side within the algebraic/coalgebraic literature dealing with free algebra constructions and on the other side from classical correspondence theory in modal logic. As such, our approach is orthogonal to recent literature based on proof-theoretic methods and, in a way, complements it.  相似文献   

11.
In a modular approach, we lift Hilbert-style proof systems for propositional, modal and first-order logic to generalized systems for their respective team-based extensions. We obtain sound and complete axiomatizations for the dependence-free fragment FO(~) of Väänänen's first-order team logic TL, for propositional team logic PTL, quantified propositional team logic QPTL, modal team logic MTL, and for the corresponding logics of dependence, independence, inclusion and exclusion.As a crucial step in the completeness proof, we show that the above logics admit, in a particular sense, a semantics-preserving elimination of modalities and quantifiers from formulas.  相似文献   

12.
Proof-theoretic method has been successfully used almost from the inception of interpolation properties to provide efficient constructive proofs thereof. Until recently, the method was limited to sequent calculi (and their notational variants), despite the richness of generalizations of sequent structures developed in structural proof theory in the meantime. In this paper, we provide a systematic and uniform account of the recent extension of this proof-theoretic method to hypersequents, nested sequents, and labelled sequents for normal modal logic. The method is presented in terms and notation easily adaptable to other similar formalisms, and interpolant transformations are stated for typical rule types rather than for individual rules.  相似文献   

13.
We see a systematic set of cut-free axiomatisations for all the basic normal modal logics formed by some combination the axioms d, t, b, 4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the literal sense. No semantic notions are used inside the proof systems, in particular there is no use of labels. All their rules are invertible and the rules cut, weakening and contraction are admissible. All systems admit a straightforward terminating proof search procedure as well as a syntactic cut elimination procedure.   相似文献   

14.
Classical proof forests are a proof formalism for first-order classical logic based on Herbrand’s Theorem and backtracking games in the style of Coquand. First described by Miller in a cut-free setting as an economical representation of first-order and higher-order classical proof, defining features of the forests are a strict focus on witnessing terms for quantifiers and the absence of inessential structure, or ‘bureaucracy’.This paper presents classical proof forests as a graphical proof formalism and investigates the possibility of composing forests by cut-elimination. Cut-reduction steps take the form of a local rewrite relation that arises from the structure of the forests in a natural way. Yet reductions, which are significantly different from those of the sequent calculus, are combinatorially intricate and do not exclude the possibility of infinite reduction traces, of which an example is given.Cut-elimination, in the form of a weak normalisation theorem, is obtained using a modified version of the rewrite relation inspired by the game-theoretic interpretation of the forests. It is conjectured that the modified reduction relation is, in fact, strongly normalising.  相似文献   

15.
I give a systematic presentation of a fairly large family of multiple-conclusion modal logics that are paraconsistent and/or paracomplete. After providing motivation for studying such systems, I present semantics and tableau-style proof theories for them. The proof theories are shown to be sound and complete with respect to the semantics. I then show how the “standard” systems of classical, single-conclusion modal logics fit into the framework constructed.  相似文献   

16.
We propose and investigate a uniform modal logic framework for reasoning about topology and relative distance in metric and more general distance spaces, thus enabling the comparison and combination of logics from distinct research traditions such as Tarski’s S4 for topological closure and interior, conditional logics, and logics of comparative similarity. This framework is obtained by decomposing the underlying modal-like operators into first-order quantifier patterns. We then show that quite a powerful and natural fragment of the resulting first-order logic can be captured by one binary operator comparing distances between sets and one unary operator distinguishing between realised and limit distances (i.e., between minimum and infimum). Due to its greater expressive power, this logic turns out to behave quite differently from both S4 and conditional logics. We provide finite (Hilbert-style) axiomatisations and ExpTime-completeness proofs for the logics of various classes of distance spaces, in particular metric spaces. But we also show that the logic of the real line (and various other important metric spaces) is not recursively enumerable. This result is proved by an encoding of Diophantine equations.  相似文献   

17.
We survey the best known lower bounds on symbols and lines in Frege and extended Frege proofs. We prove that in minimum length sequent calculus proofs, no formula is generated twice or used twice on any single branch of the proof. We prove that the number of distinct subformulas in a minimum length Frege proof is linearly bounded by the number of lines. Depthd Frege proofs ofm lines can be transformed into depthd proofs ofO(m d+1) symbols. We show that renaming Frege proof systems are p-equivalent to extended Frege systems. Some open problems in propositional proof length and in logical flow graphs are discussed. Supported in part by NSF grant DMS-9205181  相似文献   

18.
We investigate model theoretic characterisations of the expressive power of modal logics in terms of bisimulation invariance. The paradigmatic result of this kind is van Benthem’s theorem, which says that a first-order formula is invariant under bisimulation if, and only if, it is equivalent to a formula of basic modal logic. The present investigation primarily concerns ramifications for specific classes of structures. We study in particular model classes defined through conditions on the underlying frames, with a focus on frame classes that play a major role in modal correspondence theory and often correspond to typical application domains of modal logics. Classical model theoretic arguments do not apply to many of the most interesting classes-for instance, rooted frames, finite rooted frames, finite transitive frames, well-founded transitive frames, finite equivalence frames-as these are not elementary. Instead we develop and extend the game-based analysis (first-order Ehrenfeucht-Fraïssé versus bisimulation games) over such classes and provide bisimulation preserving model constructions within these classes. Over most of the classes considered, we obtain finite model theory analogues of the classically expected characterisations, with new proofs also for the classical setting. The class of transitive frames is a notable exception, with a marked difference between the classical and the finite model theory of bisimulation invariant first-order properties. Over the class of all finite transitive frames in particular, we find that monadic second-order logic is no more expressive than first-order as far as bisimulation invariant properties are concerned — though both are more expressive here than basic modal logic. We obtain ramifications of the de Jongh-Sambin theorem and a new and specific analogue of the Janin-Walukiewicz characterisation of bisimulation invariant monadic second-order for finite transitive frames.  相似文献   

19.
We carry out a unified investigation of two prominent topics in proof theory and order algebra: cut-elimination and completion, in the setting of substructural logics and residuated lattices.We introduce the substructural hierarchy — a new classification of logical axioms (algebraic equations) over full Lambek calculus FL, and show that a stronger form of cut-elimination for extensions of FL and the MacNeille completion for subvarieties of pointed residuated lattices coincide up to the level N2 in the hierarchy. Negative results, which indicate limitations of cut-elimination and the MacNeille completion, as well as of the expressive power of structural sequent calculus rules, are also provided.Our arguments interweave proof theory and algebra, leading to an integrated discipline which we call algebraic proof theory.  相似文献   

20.
A filter of a sentential logic ? is Leibniz when it is the smallest one among all the ?-filters on the same algebra having the same Leibniz congruence. This paper studies these filters and the sentential logic ?+ defined by the class of all ?-matrices whose filter is Leibniz, which is called the strong version of ?, in the context of protoalgebraic logics with theorems. Topics studied include an enhanced Correspondence Theorem, characterizations of the weak algebraizability of ?+ and of the explicit definability of Leibniz filters, and several theorems of transfer of metalogical properties from ? to ?+. For finitely equivalential logics stronger results are obtained. Besides the general theory, the paper examines the examples of modal logics, quantum logics and Łukasiewicz's finitely-valued logics. One finds that in some cases the existence of a weak and a strong version of a logic corresponds to well-known situations in the literature, such as the local and the global consequences for normal modal logics; while in others these constructions give an independent interest to the study of other lesser-known logics, such as the lattice-based many-valued logics. Received: 30 October 1998 /?Published online: 15 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号