首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
采用浸渍法制备了表面AgX(X=I,Br)等离子基元修饰的ZnO纳米柱状阵列,研究了浸渍浓度和时间以及紫外光光照预处理对ZnO纳米柱状阵列可见光光催化活性的影响.采用场发射扫描电子显微镜、X射线衍射仪、紫外可见漫反射吸收光谱以及X射线光电子能谱仪等手段对ZnO纳米柱状阵列的形貌、相组成、禁带宽度及其表面特性进行了表征.结果显示,AgBr颗粒分布于ZnO纳米柱状阵列的顶端及顶端侧面,同时AgBr颗粒之间相互接触而形成网状结构.通过紫外光光照预处理,AgBr表面出现细小颗粒,形成Ag/AgBr/ZnO纳米复合结构.可见光光催化降解甲基橙结果表明,在相同工艺条件下所制AgBr/ZnO的可见光光催化活性明显优于AgI/ZnO,且与浸渍浓度及时间有关.由于ZnO纳米柱状阵列的比表面积大,AgBr的可见光响应特性以及Ag/AgBr纳米结构的表面等离子效应,经过紫外光光照预处理形成的Ag/AgBr/ZnO纳米复合结构表现出最好的可见光光催化活性.  相似文献   

2.
Polyaniline (PANI)/zinc oxide (ZnO) nanocomposite was synthesized by in-situ polymerization. X-ray diffraction patterns, UV?Cvisible spectroscopy, SEM, and TEM were used to characterize the composition and structure of the nanocomposite. Nanostructured PANI/ZnO composite was used as photocatalyst in the photodegradation of methylene blue dye molecules in aqueous solution. The photocatalytic activity of PANI/ZnO nanocomposite under UV and visible light irradiation was evaluated and was compared with that of ZnO nanoparticles. ZnO/PANI core?Cshell nanocomposite had greater photocatalytic activity than ZnO nanoparticles and pristine PANI under visible light irradiation. According to these results, application of PANI as a shell on the surface of ZnO nanoparticles causes the enhanced photocatalytic activity of the PANI/ZnO nanocomposite. Also UV?Cvisible spectroscopy studies showed that the absorption peak for PANI/ZnO nanocomposite has a red shift toward visible wavelengths compared with the ZnO nanoparticles and pristine PANI. The effect of different operating conditions on the photocatalytic performance of PANI/ZnO nanocomposite in the photodegradation of methylene blue dye molecules was investigated in a bath experimental setup.  相似文献   

3.
The unique two-dimensional structure and surface chemistry of reduced graphene oxide (rGO) along with its high electrical conductivity can be exploited to modify the electrochemical properties of ZnO nanoparticles (NPs). ZnO–rGO nanohybrids can be engineered in a simple new two-step synthesis, which is both fast and energy-efficient. The resulting hybrid materials show excellent electrocatalytic and photocatalytic activity. The structure and composition of the as-prepared bare ZnO nanorods (NRs) and the ZnO–rGO hybrids have been extensively characterised and the optical properties subsequently studied by UV/Vis spectroscopy and photoluminescence (PL) spectroscopy (including decay lifetime measurements). The photocatalytic degradation of Rhodamine B (RhB) dye is enhanced using the ZnO–rGO hybrids as compared to bare ZnO NRs. Furthermore, potentiometry comparing ZnO and ZnO–rGO electrodes reveals a featureless capacitive background for an Ar-saturated solution whereas for an O2-saturated solution a well-defined redox peak was observed using both electrodes. The change in reduction potential and significant increase in current density demonstrates that the hybrid core–shell NRs possess remarkable electrocatalytic activity for the oxygen reduction reaction (ORR) as compared to NRs of ZnO alone.  相似文献   

4.
Ag nanoparticles supported on the surface of three-dimensional (3D) flower-like ZnO nanostructure were synthesized by a microwave-assisted solution method. The obtained products were characterized by X-ray diffraction analysis, field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectrophotometry, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The analytical results confirmed homogeneously distributed Ag nanoparticles supported on the surface of flower-like ZnO nanostructure. The photocatalytic effect of the heterostructure Ag/ZnO nanocomposites was investigated using photodegradation under ultraviolet (UV) light of methylene blue as model dye. The heterostructure Ag/ZnO nanocomposites exhibited much higher photocatalytic activity than pure ZnO flowers. The improved photocatalytic properties are attributed to formation of a Schottky barrier at the metal–semiconductor interface of the Ag/ZnO nanocomposites.  相似文献   

5.
Cu-Bi纳米粉体的制备及其可见光光催化性能研究   总被引:1,自引:0,他引:1  
以Cu(NO3)2、Bi(NO3)3、COfNH)2为原料,聚乙二醇(PEG)为分散剂,采用均匀共沉淀法制备了Cu-Bi催化剂,用X-射线粉末衍射法、能量色散法、透射电镜和紫外-可见漫反射光谱法对催化剂的组成、粒径大小、表面形貌和光学吸收性能进行了详细表征,并以酸性大红和亚甲基蓝为目标降解物,考察了所制备的Cu-Bi催化剂在可见光下的光催化性能。实验结果表明,该催化剂为类球形纳米粉体,粒度均匀,粒径约50nm。在可见光作用下,该催化剂对酸性大红和亚甲基蓝均表现出良好的光催化性能,且在240min前,对酸性大红的降解率要优于亚甲基蓝;240min后则两者的降解效果相近。  相似文献   

6.
A photocatalyst of Ta-doped ZnO was prepared by a modified Pechini-type method. The structural, morphological properties and photocatalytic activity of 1 mol % Ta-doped ZnO samples annealed at different temperatures were characterized. The photo-oxidation of methylene blue under the visible-light irradiation followed the pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. It is found that the photocatalysis of 1% Ta-doped ZnO annealed at 700 °C showed excellent performance of the photodegradation of methylene blue, which was attributed to a competitive trade-off among the crystallinity, surface hydroxyl groups, and specific surface area. The processing parameter such as the pH value also played an important role in tuning the photocatalytic activity. The maximum photodecomposed rate was achieved at pH=8, and an novel model about the absorption of methylene blue on the surface of the catalysts was proposed.  相似文献   

7.
Atomic‐layer deposition (ALD) is a thin‐film growth technology that allows for conformal growth of thin films with atomic‐level control over their thickness. Although ALD is successful in the semiconductor manufacturing industry, its feasibility for nanoparticle coating has been less explored. Herein, the ALD coating of TiO2 layers on ZnO nanoparticles by employing a specialized rotary reactor is demonstrated. The photocatalytic activity and photostability of ZnO nanoparticles coated with TiO2 layers by ALD and chemical methods were examined by the photodegradation of Rhodamine B dye under UV irradiation. Even though the photocatalytic activity of the presynthesized ZnO nanoparticles is higher than that of commercial P25 TiO2 nanoparticles, their activity tends to decline due to severe photocorrosion. The chemically synthesized TiO2 coating layer on ZnO resulted in severely declined photoactivity despite the improved photostability. However, ultrathin and conformal ALD TiO2 coatings (≈0.75–1.5 nm) on ZnO improved its photostability without degradation of photocatalytic activity. Surprisingly, the photostability is comparable to that of pure TiO2, and the photocatalytic activity to that of pure ZnO.  相似文献   

8.
ZnO/ZnWO4 composite rod-like nanoparticles were synthesized by low-temperature soft solution method at 95 °C with different reaction times (1–120 h), in the presence of non-ionic copolymer surfactant Pluronic F68. Obtained nanoparticles had diameters in the range around 10 nm and length of 30 nm. Optical properties such as reflection and room temperature photoluminescence of obtained samples showed strong dependence on their crystallinity and composition. Photocatalytic activity of ZnO/ZnWO4 nanopowders was checked using photodegradation of selected dyes as model system. Obtained results were correlated with specific surface area, particle sizes, crystallinity and ZnO/ZnWO4 ratio of the samples. As crystallinity of ZnWO4 component in the ZnO/ZnWO4 increase, photocatalytic activity also increases. The main findings can be explained by charge transfer reactions that follow light absorption by ZnO and ZnWO4 in nanocomposite.  相似文献   

9.
Metal oxide frame works along with carbon materials have been attracting tremendous attention of researches as the potential materials for energy and environmental remediation. In the present work heterostructures of (ZnO/CuO)/rGO ternary nanocomposites were synthesized by solid-state method. The crystalline structure of the nanoparticles was obtained from the XRD analysis. Optical band gap of the ZnO nanoparticles (3.1 eV) is tuned to 2.8 eV in the synthesized (ZnO/CuO)/rGO ternary nanocomposites. Field emission scanning electron microscope images of the (ZnO/CuO)/rGO ternary nanocomposites revealed formation of well-developed flowers like morphology of (ZnO/CuO) nanoparticles on rGO sheets. Photoluminescence spectroscopy analysis of (ZnO/CuO)/rGO ternary nanocomposites show enhancement in the electron-hole pair separation and thereby diminishing electron-hole pairs recombination rates effectively. In the present work, the photocatalytic activity of the ZC3G15 ternary nanocomposites show 99% and 93% of degradation efficiency respectively against RhB dye and 4-chlorophenol for 20 min under visible light irradiation. Thus, the simple solid-state method provides the effective ternary nanocomposites heterostructures light harvesting material for energy and environmental remediation.  相似文献   

10.
This paper describes a novel catalyst of the Ta-doped ZnO nanocrystals prepared by a modified polymerizable complex method using the water-soluble tantalum precursor as the sources of Ta. The catalysts were characterized by means of various analytical techniques as a function of Ta content (x=0–4 mol%) systematically. A remarkable advantage of the results was confirmed that dopant Ta enhanced the visible-light absorption of ZnO and the low-solubility tantalum doping could restrain the growth of crystal and minish the particle size. The relationship between the physicochemical property and the photocatalytic performance was discussed, and it was found that the photocatalytic activity in the photochemical degradation of methylene blue under visible-light irradiation (λ420 nm) was dependent on the contents of the dopant, which could affect the particle size, concentration of surface hydroxyl groups and active hydrogen-related defect sites, and the visible-light absorption. The highest photocatalytic activity was obtained for the 1.0 mol% Ta-doped ZnO sample.  相似文献   

11.
Recent advances in photocatalysis focus on the development of materials with hierarchical structure and on the surface plasmon resonance (SPR) phenomenon exhibited by metal nanoparticles (NPs). In this work, both are combined in a material where size‐controllable Ag‐NPs are uniformly loaded onto the hierarchical microporous and mesoporous and nanocolumnar structures of ZnO, resulting in Ag‐NP/ZnO nanocomposites. The embedded Ag‐NPs slightly decrease the hydrophobicity of fibrous ZnO, improve its wettability, and increase the absorption of formaldehyde (H2CO) onto the photocatalyst, all of this resulting in excellent photodegradation of formaldehyde in aqueous solution. Besides, we found that Ag‐NPs with optimal size not only accelerate the charge transfer to the surface of ZnO, but also strengthen the SPR effect in the intercolumnar channels of fibrous ZnO particles combining with high concentration of photo‐generated radical species. The micro‐to‐mesoporous ZnO is like a nanoarray packed Ag‐NPs. With Ag‐NPs of diameter 2.5 < ? < 6.5 nm, ZnO exhibits the most superior photodegradation rate constant value of 0.0239 min?1 with total formaldehyde removal of 97%. This work presents a new feasible approach involving highly sophisticated Ag‐NP/ZnO architecture combining the SPR effect and hierarchically ordered structures, which results in high photocatalytic activity for formaldehyde photodegradation.  相似文献   

12.
Nitrogen-modified cobalt-doped TiO2 materials were successfully prepared via a modified sol–gel method. The structure and properties of the catalysts were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM, ultraviolet–visible light diffuse reflectance spectra (UV–Vis DRS), N2 adsorption–desorption isotherms, and energy-dispersive X-ray spectroscopy. The XRD patterns of the pure and co-doped TiO2 samples indicate that the predominant phase was anatase. The average grain size obtained from TEM was approximately 10 nm. The Brunauer–Emmett–Teller analysis results indicate that the specific surface area was 77.7 m2 g?1. The UV–Vis DRS results for the co-doped sample reveal an absorption edge that had been red-shifted to 500 nm. The photocatalytic activities of the samples were evaluated through photodegradation of papermaking wastewater under UV and visible light irradiation. Compared with the cobalt-doped TiO2 sample and Degussa P25, the 3 mol% N-doped mesoporous N/Co-TiO2 photocatalyst exhibited the highest photocatalytic activity, which can be ascribed to the synergistic effect of the N and Co co-doping.  相似文献   

13.
Nanostructured ZnO and CuO, and coupled oxides, i.e., ZnCu, Zn2Cu, and ZnCu2, with ZnO:CuO molar ratios of 1:1, 2:1, and 1:2, respectively, were successfully prepared through a simple, one-step, mi-crowave-assisted urea–nitrate combustion synthesis, without the use of organic solvents or surfac-tants. The prepared samples were characterized using X-ray diffraction, X-ray photoelectron spec-troscopy, scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy, Fourier-transform infrared spectroscopy, diffuse reflectance spectroscopy, and photo-luminescence spectroscopy. The optical absorption of ZnO extended into the visible region after CuO loading. The photocatalytic activities of ZnO, CuO, and the coupled oxides were evaluated based on photodegradation of 2,4-dichlorophenol under visible-light irradiation. The coupled metal oxide Zn2Cu showed the best photocatalytic activity;this was mainly attributed to the extended photore-sponsive range and the increased charge separation rate in the nanocomposite. The photocatalytic degradation process obeyed pseudo-first-order kinetics. The results suggest that the coupled metal oxide Zn2Cu has potential applications as an efficient catalytic material with high efficiency and recyclability for the photocatalytic degradation of organic pollutants in aqueous solution under visible-light irradiation.  相似文献   

14.
采用水热法制备了结晶良好的ZnS纳米粒子,通过XRD、FT-IR、TEM、UV-Vis DRS等手段对所合成的ZnS粉体的结构、粒度和理化性能进行表征,并以亚甲基蓝为目标降解物,评价了ZnS粉体在紫外光和可见光下的光催化性能。研究结果表明,水热法制备的纳米ZnS为典型的六方晶系,粒径大致为10~20 nm,不论是在紫外光或可见光下对亚甲基蓝均具有优异的脱色率,呈现出良好的光催化性能。  相似文献   

15.
A sandwiched structure of CdS/Ag/ZnO nanorod photoanode exhibits greatly enhanced photoelectrochemical activity for solar hydrogen generation, due to synergistic effect of CdS nanocrystallites and plasmonic Ag nanoparticles for the enhanced optical absorption and the promoted charge carrier separation.  相似文献   

16.
Wu  Meng  Yan  Luting  Li  Jiali  Wang  Lei 《Research on Chemical Intermediates》2017,43(11):6407-6419

Ag/AgCl is a visible-light plasmonic photocatalyst that has attracted considerable attention because of its high visible-light absorption and activity owing to the surface plasmon resonance of noble-metal nanoparticles. In this study, Ag/AgCl/ZnO tetrapod composite was prepared by introducing ZnO tetrapods into Ag/AgCl prepared by a polydopamine reduction route. Ag/AgCl was densely deposited on the three-dimensional support framework provided by the ZnO tetrapods. The framework possessed a certain degree of porosity, thereby improving the specific surface area of the Ag/AgCl/ZnO composite. The interaction of ZnO with Ag/AgCl further increased the separation and transfer of electron–hole pairs. The Ag/AgCl/ZnO composite showed excellent photocatalytic activity and good stability. Under xenon lamp irradiation for 20 min, degradation of rhodamine B reached 90%. After four recycling tests, degradation remained stable without any sign of reduction. Ag/AgCl/ZnO tetrapod composite is shown to be a kind of green photocatalyst offering high activity, good stability, and recyclability.

  相似文献   

17.
Tetracycline (TC) and other antibiotics accumulated in groundwater and soil pollute ecological environment and threaten human health. Gold nanoparticles doped on photocatalysts are able to enhance the photodegradation efficiency during removing these antibiotics, but preparation of Au nanoparticles of well‐dispersion on photocatalysts remains challenging. In this work, zeolite imidazolate (ZIF‐8) was employed as the precursor to prepare Au@ZnO photocatalyst via impregnation and in‐situ reduction method to efficiently degrade the tetracycline in the aqueous solution. Au nanoparticles are of 10 nm in size and uniformly dispersed on the surfaces of ZnO microstructures. The as‐prepared Au@ZnO is able to remove 85.5% of TC of 0.010 mg/mL within 2 h, presenting higher photocatalytic activity than pure ZnO catalyst. Most importantly, the catalyst shows its superior stability after five cycles without structure and activity changing. The mechanism of the photocatalytic degradation was discussed in detail.  相似文献   

18.
Well-aligned ZnO nanorods (NRs) were grown on indium-tin-oxide (ITO) slide by the hydrothermal method and used as templates for preparing ZnO/Au composite nanoarrays. The optical and morphological properties of ZnO/Au composites under various HAuCl(4) concentrations were explored via UV-vis absorption spectroscopy, photoluminescence (PL) and scanning electron microscopy (SEM). The density and size of gold nanoparticles (Au NPs) on ZnO NRs can be controlled by adjusting the concentration of HAuCl(4). The optimal ZnO/Au composites display complete photocatalytic degradation of methyl blue (MB) within 60 min, which is superior to that with pure ZnO NRs prepared by the same method. The reason of better photocatalytic performance is that Au NPs act as electron traps and it prevents the rapid recombination of electrons and holes, resulting in the improvement of photocatalytic efficiency. The photocatalytic performance of ZnO/Au composites is mainly controlled by the density of Au NPs formed on ZnO NRs. The application in rapid photodegradation of MB shows the potential of ZnO/Au composite as a convenient catalyst for the environmental purification of organic pollutants.  相似文献   

19.
Graphene‐based hybrid nanostructures possess many advantages in the field of electrochemical energy applications. In this work, a facile and efficient hydrothermal approach has been developed for the preparation of NiFe alloy nanoparticles/rGO hybrid nanostructures, in which the nanoparticles are well combined with rGO nanosheets and the size of the nanoparticles is about 100 nm. Moreover, the electrochemical oxygen evolution reaction (OER) tests confirmed that the obtained NiFe/rGO hybrid nanostructures possess notably higher activity than both the rGO‐free NiFe nanoparticles and pure Ni/rGO hybrids, and the optimal NiFe ratio is 2:1. The OER overpotential at 20 mA cm?1?2 with Ni2Fe/rGO is as low as 0.285 V, which is 96 mV lower than that of pure Ni/rGO hybrids. Meanwhile, the Ni2Fe/rGO catalyst has excellent stability. Therefore, this work contributes a facile and efficient method to prepare a NiFe alloy nanoparticles/rGO hybrid structure for potential applications in the field of electrochemical energy devices, such as electrochemical water splitting cells, rechargeable metal/air batteries, etc.  相似文献   

20.
纳米ZnO薄膜的制备及其可见光催化降解甲基橙   总被引:9,自引:0,他引:9  
采用溶胶-凝胶方法制备ZnO透明溶胶, 在铝箔上涂膜后经500 ℃处理制得具有可见光响应的纳米ZnO薄膜光催化剂. 以甲基橙模拟有机污染物, 在可见光下研究了薄膜的降解性能, 结果表明, 用一片有效面积为200 cm2的ZnO/Al薄膜作为催化剂, 甲基橙的降解率达到96.3%, 比ZnO负载在玻璃上制得的ZnO/glass薄膜催化剂活性高得多. 采用扫描电镜与原子力显微镜对ZnO/Al薄膜制备条件进行了表征, 结果发现多孔ZnO/Al薄膜比致密ZnO/Al薄膜具有更高的活性, 实验制备的具有高活性的ZnO/Al薄膜颗粒平均直径为52.2 nm. 采用本方法制备的ZnO/Al薄膜是一种具有应用前景的, 能在可见光下降解有机物的有效光催化剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号