首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Equilibrium fluctuations of islands of adsorbed O atoms on Ru(0001) were investigated by scanning tunneling microscopy (STM), density functional theory calculations (DFT) and Monte Carlo (MC) simulations. Very ramified (2 x 2)-O islands were observed by high-speed STM that point to complex interactions between the O atoms. The DFT calculations show that, in addition to pairwise attractive interactions between third-nearest neighbors, a repulsive three-body interaction exists between these. MC simulations that include three-body interactions reproduce the observed ordering behavior.  相似文献   

2.
Using scanning tunneling microscopy (STM) and density functional theory simulations, we have studied the diffusion of alkoxy species formed by the dissociation of alcohols on bridge-bonded oxygen (BBO) vacancies (BBO(V)'s) on TiO2(110). At elevated temperatures (>or=400 K) the sequential isothermal STM images show that mobile BBO(V)'s mediate the diffusion of alkoxy species by providing space for alkyl-group-bearing BBO atom to diffuse into. The experimental findings are further supported by simulations that find that BBO(V) diffusion is the rate limiting step in the overall diffusion mechanism.  相似文献   

3.
Scanning tunneling microscopy (STM) images of water submonolayers on Pd(111) reveal quasiperiodic and isolated adclusters with internal structure that would ordinarily be ascribed to icelike puckered hexagonal units. However, density functional theory and STM simulations contradict this conventional picture, showing instead that the water adlayers are composed mainly of flat-lying molecules arranged in planar water hexagons. A new rule for two dimensional (2D) water growth is offered that generates the structures observed experimentally from planar hexamer units.  相似文献   

4.
The W(110)/C-R(15×3) reconstructed surface has been studied by STM at variable tip-surface separation controlled by the tunneling gap resistance. A pronounced dependence of the STM image contrast as a function of tip height has been observed which is explained by the suppression of higher Fourier components, i.e. small wavelength features, with increasing tip height and an additional spatial dependence of the decay length of the surface wavefunction. As an important implication of our study we have found that STM images of non-trivial surface structures can depend critically on the tunneling gap resistance.  相似文献   

5.
《Surface science》2002,496(1-2):69-76
We study tip-adsorbate–substrate interactions in scanning tunneling microscopy (STM) manipulation and imaging, and the influence of impurities on the images. Thence, we perform molecular dynamics simulations and calculate qualitative STM images for oxygen on Pt(1 1 1) surface. The adsorption site of the oxygen molecule is found to be in accordance with ab initio calculations. The calculated STM image has a good resemblance to the experimental ones. The contamination of the tip by oxygen or water alters the STM image strongly. Molecular dynamics simulations on manipulations of oxygen on the surface reveal several mechanisms of how molecular oxygen can be either produced or decomposed with STM tip. Finally, we find out that transfer of oxygen from the surface to an STM tip is not very probable.  相似文献   

6.
The surfaces of a ten years aged crystal and a freshly prepared κ-(BEDT-TTF)2Cu(NCS)2 crystal were compared by scanning tunneling microscopy (STM). The molecularly-resolved STM images of the bc plane of the crystals agree with each other and with the electronic contrast obtained by new density functional theory (DFT) based simulations. Even after ten years STM images of the molecular stacking of BEDT-TTF display a variation in brightness at the positions of different molecules. We attribute this symmetry breaking concerning the brightness in the STM images of the otherwise equivalent BEDT-TTF dimers to the electronic states of a relaxed surface.  相似文献   

7.
Inelastic electron tunneling spectroscopy (IETS) performed with the scanning tunneling microscope (STM) has been deemed as the ultimate tool for identifying chemicals on the atomic scale. However, IETS-based chemical analysis is error-prone due to the numerous degrees of freedom of chemisorbed molecular systems. First-principles simulations of IETS are presented that, by quantitative comparison with the experimental spectra, permit one to determine the final products of an STM-induced reaction on chemisorbed benzene. Our simulations reveal that IETS possesses an enhanced sensitivity to atomic structure as compared to topographic imaging due to both its energy and space resolution.  相似文献   

8.
The intersection between dislocations and a Ag(111) surface has been studied using an interplay of scanning tunneling microscopy (STM) and molecular dynamics. Whereas the STM provides atomically resolved information about the surface structure and Burgers vectors of the dislocations, the simulations can be used to determine dislocation structure and orientation in the near-surface region. In a similar way, the subsurface structure of other extended defects can be studied. The simulations show dislocations to reorient the partials in the surface region leading to an increased splitting width at the surface, in agreement with the STM observations. Implications for surface-induced cross slip are discussed.  相似文献   

9.
Monolayer and bi-layer silicon nanoparticle (SiNP) films with wide band gaps (up to 4 eV) have been produced in UHV with narrow size distributions of particles with 2-4 nm diameters and were studied using scanning tunneling microscopy (STM) and spectroscopy (STS). The films then were manipulated by applying different values for the tunneling resistance. Nanoparticle fusion and fission processes allow to shape the particles in the films in various ways and to write in white and black on the film template.  相似文献   

10.
We investigate via density functional theory (DFT) the appearance of small MgO-supported gold clusters with 8 to 20 atoms in a scanning tunneling microscope (STM) experiment. Comparison of simulations of ultrathin films on a metal support with a bulk MgO leads to similar results for the cluster properties relevant for STM. Simulated STM pictures show the delocalized states of the cluster rather than the atomic structure. This finding is due to the presence of s- derived delocalized states of the cluster near the Fermi energy. The properties of theses states can be understood from a jellium model for monovalent gold.  相似文献   

11.
New evidence of the paired end-bridge configuration in the room-temperature adsorption geometries of C2H2 molecules on Si(0 0 1) is presented by scanning tunneling microscopy (STM) and ab initio pseudopotential calculations. The distinct four-leaved feature occupying two adjacent Si dimer sites in the experimental empty-state STM images are well reproduced by simulations of the paired end-bridge adsorption configuration. Calculated energetics suggests that the Si(0 0 1) surface is covered by paired end-bridge structures at the saturation coverage of 1 ML, in agreement with the existing experiments.  相似文献   

12.
At low tunneling resistance, scanning tunneling microscopy (STM) images of a Rh(100) surface with adsorbed hydrogen reproducibly show protrusions in all bridge sites of the surface, leading to a naive interpretation of all bridge sites being occupied with H atoms. Using quantitative low-energy electron diffraction and temperature programmed desorption we find a much lower H coverage, with most H atoms in fourfold hollow sites. Density functional theory calculations show that the STM result is due to the influence of the tip, attracting the mobile H atoms into bridge sites. This demonstrates that STM images of highly mobile adsorbates can be strongly misleading and underlines the importance of additional analysis techniques.  相似文献   

13.
We study scanning tunneling microscopy (STM) images near a phase boundary of the Si(111)- (square root of (3) x square root of (3))-Ag surface by using Monte Carlo simulations based on results of first-principles calculations. The boundary is found to fluctuate from snapshot to snapshot, and the feature of the simulated STM images differs distinctly from the observed one with a straightly extending honeycomb pattern of bright spots. Remarkably, statistical averages of the simulated images reproduce the observed feature. This study gives a warning of our tendency to relate STM images revealing clear arrangement of bright spots with some stable structure.  相似文献   

14.
Scanning tunneling microscopy/spectroscopy (STM/STS), which has been so epoch-making in surface science experiments introduced many challenging problems also to the theory of condensed matter physics. Recent progress in theories of STM/STS contributed to revealing the relation between the atomic structure of the tip and the STM/STS data, and to clarify various strange phenomena observed. The present article reviews various important issues of the fundamentals of STM/STS from theoretical view points.

After surveying the so far presented theoretical approaches, the first-principles simulation method based on the microscopic electronic state of both the sample surface and the tip is introduced. Several examples of the simulation such as graphite and Si surfaces, are described. Some novel phenomena of the microscopic tunnel system of STM such as the negative differential resistance in STS and single electron tunneling through fine supported particles are also discussed, as well as the many-body effect or electron-phonon coupling effect on STM/STS.  相似文献   


15.
Scanning tunneling microscopy (STM) at liquid helium temperature is used to image potassium adsorbed on graphite at low coverage (≈0.02 monolayer). Single atoms appear as protrusions on STM topographs. A statistical analysis of the position of the atoms demonstrates repulsion between adsorbates, which is quantified by comparison with molecular dynamics simulations. This gives access to the dipole moment of a single adsorbate, found to be 10.5±1 D. Time-lapse imaging shows that long-range order is broken by thermally activated diffusion, with a 30 meV barrier to hopping between graphite lattice sites.  相似文献   

16.
We present a theoretical study of the influence of intra-atomic interorbital interference on the formation of STM images of metal surfaces. The obtained results show that this kind of interference may modify significantly the tunneling current by the increase or decrease of the current contributions flowing through different orbitals of the surface atoms. STM simulations performed for aluminium and nickel surfaces indicate that the height of corrugation and the topographies of STM images of different surfaces depend considerably on this interference.  相似文献   

17.
Partially oxidized Si(111) surfaces and surfaces of highly oriented pyrolytic graphite (HOPG) were studied by two different ultrahigh vacuum scanning tunneling microscope (UHV-STM) systems and by an STM system working under ambient conditions, respectively. The STM current images of partially oxidized Si(111) surfaces and HOPG surfaces were analyzed by one/two-dimensional fast Fourier transformation (1D-FFT/2D-FFT). The phenomenon of temporal oscillations of tunneling current on the partially oxidized Si(111) surfaces was detected with both UHV-STM systems. Temporal as well as spatial oscillations of tunneling current appeared in highly resolved STM current images of the Si(111) surfaces simultaneously, but both kinds of oscillations could be discriminated according to their different influence on the 2D-FFT spectra of the current images, while varying the scanning range and rate. On clean HOPG surfaces only spatial oscillations of tunneling current induced by the surface structure were observed.  相似文献   

18.
The C amount and the structure of the Si(001)-c(4 x 4) surface is studied using scanning tunneling microscopy (STM) and ab initio calculations. The c(4 x 4) phase is found to contain 1/8 monolayer C (1 C atom in each primitive unit cell). From the C amount and the symmetry of high-resolution STM images, it is inferred that the C atoms substitute the fourth-layer site below the dimer row. We construct a structure model relying on ab initio energetics and STM simulations. Each C atom induces an on-site dimer vacancy and two adjacent rotated dimers on the same dimer row. The c(4 x 4) phase constitutes the subsurface Si(0.875)C(0.125) delta layer with two-dimensionally ordered C atoms.  相似文献   

19.
We argue that the scanning tunneling microscope (STM) images of resonant states generated by doping Zn or Ni impurities into Cu-O planes of BSCCO are the result of quantum interference of the impurity signal coming from several distinct paths. The impurity image seen on the surface is greatly affected by interlayer tunneling matrix elements. We find that the optimal tunneling path between the STM tip and the metal (Cu, Zn, or Ni) d(x(2)-y(2)) orbitals in the Cu-O plane involves intermediate excited states. This tunneling path leads to the fourfold nonlocal filter of the impurity state in Cu-O plane that explains the experimental impurity spectra. Applications of the tunneling filter to the Cu vacancy defects and "direct" tunneling into Cu-O planes are also discussed.  相似文献   

20.
Inelastically tunneled electrons from a scanning tunneling microscope (STM) were used to induce vibrationally mediated motion of a single cis-2-butene molecule among four equivalent orientations on Pd(110) at 4.8 K. The action spectrum obtained from the motion clearly detects more vibrational modes than inelastic electron tunneling spectroscopy with a STM. We demonstrate the usefulness of the action spectroscopy as a novel single molecule vibrational spectroscopic method. We also discuss its selection rules in terms of resonance tunneling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号