首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
Modification of mesoporous silica was carried out by reaction of SBA‐15 with di‐urea‐based ligand. Next, with the help of this ligand, palladium ions were anchored within the multidentate SBA‐15/di‐urea pore channels with high dispersion. The SBA‐15/di‐urea/Pd catalyst was characterized using various techniques. Theoretical calculations indicated that each palladium ion was strongly interacted with one nitrogen and two oxygen atoms from the multidentate di‐urea ligand located in SBA‐15 channels and these interactions remained during the catalytic cycle. These results are in good agreement with those of hot filtration test: the palladium ions have very high stability against leaching from the SBA‐15/di‐urea support. The catalytic performance of SBA‐15/di‐urea/Pd nanostructure was examined for the Suzuki coupling reaction of phenylboronic acid and electronically diverse aryl halides under mild conditions with a minimal amount of Pd (0.26 mol%). Compared to previous reports, this protocol afforded some advantages such as short reaction times, high yields of products, catalyst stability without leaching, easy catalyst recovery and preservation of catalytic activity for at least six successive runs.  相似文献   

2.
1,3‐Diphenyl‐1,3‐propanepione (DBM)‐functionalized SBA‐15 and SBA‐16 mesoporous hybrid materials (DBM‐SBA‐15 and DBM‐SBA‐16) are synthesized by co‐condensation of modified 1,3‐diphenyl‐1,3‐propanepione (DBM‐Si) and tetraethoxysilane (TEOS) in the presence of Pluronic P123 and Pluronic F127 as a template, respectively. The as‐synthesized mesoporous hybrid material DBM‐SBA‐15 and DBM‐SBA‐16 are used as the first precursor, and the second precursor poly(methylacrylic acid) (PMAA) is synthesized through the addition polymerization reaction of the monomer methacrylic acid. These precursors then coordinate to lanthanide ions simultaneously, and the final mesoporous polymeric hybrid materials Ln(DBM‐SBA‐15)3PMAA and Ln(DBM‐SBA‐16)3PMAA (Ln=Eu, Tb) are obtained by a sol‐gel process. For comparison, binary lanthanide SBA‐15 and SBA‐16 mesoporous hybrid materials (denoted as Ln(DBM‐SBA‐15)3 and Ln(DBM‐SBA‐16)3) are also synthesized. The luminescence properties of these resulting materials are characterized in detail, and the results reveal that ternary lanthanide mesoporous polymeric hybrid materials present stronger luminescence intensities, longer lifetimes, and higher luminescence quantum efficiencies than the binary lanthanide mesoporous hybrid materials. This indicates that the introduction of the organic polymer chain is a benefit for the luminescence properties of the overall hybrid system. In addition, the SBA‐15 mesoporous hybrids show an overall increase in luminescence lifetime and quantum efficiency compared with SBA‐16 mesoporous hybrids, indicating that SBA‐15 is a better host material for the lanthanide complex than mesoporous silica SBA‐16.  相似文献   

3.
《中国化学》2017,35(10):1619-1626
A series of SBA‐15‐supported chromia‐ceria catalysts with 3% Cr and 1%–5% Ce (3Cr‐Ce/SBA) were prepared using an incipient wetness impregnation method. The catalysts were characterized by XRD, N2 adsorption, SEM, TEM‐EDX, Raman spectroscopy, UV–vis spectroscopy, XPS and H2‐TPR, and their catalytic performance for isobutane dehydrogenation with CO2 was tested. The addition of ceria to SBA‐15‐supported chromia improves the dispersion of chromium species. 3Cr‐Ce/SBA catalysts are more active than SBA‐15‐supported chromia (3Cr/SBA), which is due to a higher concentration of Cr6+ species present on the former catalysts. The 3Cr‐3Ce/SBA catalyst shows the highest activity, which gives 35.4% isobutane conversion and 89.6% isobutene selectivity at 570 °C after 10 min of the reaction.  相似文献   

4.
《先进技术聚合物》2018,29(4):1322-1333
This work aims to develop novel composites from a poly(L ‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG) terpolymer and mesoporous silica (SBA‐15) nanofillers surface modified by post‐synthetic functionalization. SBA‐15 first reacts with a silane coupling agent, γ‐aminopropyl‐trimethoxysilane to introduce ammonium group. PLLA chains were then grafted on the surface of SBA‐15 through ammonium initiated ring‐opening polymerization of L ‐lactide. Composites were prepared via solution mixing of PLTG terpolymer and surface modified SBA‐15. The structures and properties of pure SBA‐15, γ‐aminopropyl‐trimethoxysilane modified SBA‐15 (H2N‐SBA‐15), PLLA modified SBA‐15 (PLLA‐NH‐SBA‐15), and PLTG/PLLA‐NH‐SBA‐15 composites were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, N2 adsorption‐desorption, differential scanning calorimetry, contact angle measurement, and mechanical testing. The results demonstrated that PLLA chains were successfully grafted onto the surface of SBA‐15 with grafting amounts up to 16 wt.%. The PLTG/PLLA‐NH‐SBA‐15 composites exhibit good mechanical properties. The tensile strength, Young's modulus, and elongation at break of the composite containing 5 wt.% of PLLA‐NH‐SBA‐15 were 39.9 MPa, 1.3 GPa, and 273.6%, respectively, which were all higher than those of neat PLTG or of the composite containing 5 wt.% of pure SBA‐15. Cytocompatibility tests showed that the composites present very low cytotoxicity.  相似文献   

5.
For the first time, SBA‐15/cyclodextrin nanosponge adduct was synthesized through reaction of Cl‐functionalized SBA‐15 and amine‐functionalized cyclodextrin nanosponge (CDNS). This adduct, which benefits from features of both SBA‐15 and CDNS, was then used for immobilization of Ag(0) nanoparticles which were prepared and capped using a bio‐based approach. Ag@CDNS–SBA‐15 was applied as a heterogeneous catalyst for promoting the three‐component reaction of benzaldehydes, 4‐hydroxycoumarin and urea or thiourea under ultrasonic irradiation to furnish benzopyranopyrimidines. The reaction variables were optimized using response surface methodology. The catalytic activity of Ag@CDNS–SBA‐15 was higher than those of Ag@CDNS, Ag@SBA‐15 and Ag@SBA‐15 + CDNS, confirming the contribution of both components to catalysis as well as a synergistic effect between CDNS and SBA‐15. The role of CDNS was to accommodate the substrates and bring them to the vicinity of the Ag(0) nanoparticles. Notably the catalyst was reusable and could be recovered and reused for up to four reaction runs with slight Ag(0) leaching and loss of catalytic activity.  相似文献   

6.
One‐pot, three‐component reaction of arylglyoxals, malononitrile and 4‐hydroxyquinolin‐2(1H)‐one in the presence of SBA‐15 as a nanocatalyst and using green solvent systems under various temperatures afforded the 2‐amino‐4‐aroyl‐5‐oxo‐5,6‐dihydro‐2H‐pyrano[3,2‐c]quinoline‐3‐carbonitrile derivatives. The best yield (70‐96%) were obtained using 20% mol of SBA‐15 as a nanocatalyst in H2O/EtOH (1:1) at 80 °C. The simplicity of work up procedure, using green solvent system, and good to excellent yields of products are the main advantages of this synthetic strategy.  相似文献   

7.
The incorporation of sulfonate into mesoporous SBA‐15 molecular sieves as ligands for palladium ions was used. Then SBA‐15/PrSO3Pd and SBA‐15/PrSO3PdNP were prepared and applied for the Heck arylation reaction of conjugate alkenes with aryl halides, to afford corresponding cross‐coupling products under phosphine‐free aerobic conditions with good to excellent yields. These supported palladium pre‐catalysts could be separated easily from reaction products and reused several times, showing superiority over homogeneous catalysts for industrial and chemical applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A series of Keggin‐type heteropolyacid‐based heterogeneous catalysts (Co‐/Fe‐/Cu‐POM‐octyl‐NH3‐SBA‐15) were synthesized via immobilized transition metal mono‐ substituted phosphotungstic acids (Co‐/Fe‐/Cu‐POM) on octyl‐amino‐co‐functionalized mesoporous silica SBA‐15 (octyl‐NH2‐SBA‐15). Characterization results indicated that Co‐/Fe‐/Cu‐POM units were highly dispersed in mesochannels of SBA‐15, and both types of Brønsted and Lewis acid sites existed in Co‐/Fe‐/Cu‐POM‐octyl‐NH3‐SBA‐15 catalysts. Co‐POM‐octyl‐NH3‐SBA‐15 catalyst showed excellent catalytic performance in H2O2‐mediated cyclohexene epoxidation with 83.8% of cyclohexene conversion, 92.8% of cyclohexene oxide selectivity, and 98/2 of epoxidation/allylic oxidation selectivity. The order of catalytic activity was Co‐POM‐octyl‐NH3‐SBA‐15 > Fe‐POM‐octyl‐NH3‐SBA‐15 > Cu‐POM‐octyl‐NH3‐SBA‐15. In order to obtain insights into the role of ‐octyl moieties during catalysis, an octyl‐free catalyst (Co‐POM‐NH3‐SBA‐15) was also synthesized. In comparison with Co‐POM‐NH3‐SBA‐15, Co‐POM‐octyl‐NH3‐SBA‐15 showed enhanced catalytic properties (viz. activity and selectivity) in cyclohexene epoxidation. Strong chemical bonding between ‐NH3+ anchored on the surface of SBA‐15 and heteropolyanions resulted in excellent stability of Co‐POM‐octyl‐NH3‐SBA‐15 catalyst, and it could be reused six times without considerable loss of activity.  相似文献   

9.
A green protocol has been developed for the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐diones by one‐pot cyclocondensation reaction of phthalhydrazide, aromatic aldehydes, and malononitrile or ethyl cyanoacetate using sulfonic acid functionalized SBA‐15 (SBA‐Pr‐SO3H) as a heterogeneous solid acid catalyst under solvent‐free conditions.  相似文献   

10.
Sulfonic acid functionalized SBA‐15 (SBA‐Pr‐SO3H) as a new nanoporous solid acid catalyst was applied in the green one‐pot synthesis of spirooxindole‐4H‐pyrans via condensation of isatins, malononitrile or methyl cyanoacetate or ethyl cyanoacetate, and 4‐hydroxycoumarin in water solvent. SBA‐Pr‐SO3H was proved to be an efficient heterogeneous nanoporous solid acid catalyst with a pore size of 6 nm that could be easily handled and removed from the reaction mixture by simple filtration and can be recovered and reused for several times without any loss of activity. The significant merits of present methodology are its simplicity, short reaction time, good yields, and environmentally benign mild reaction condition as water was used as a green solvent.  相似文献   

11.
Bismuth (Bi)‐containing SBA‐15 mesoporous silica catalysts, Bi/SBA‐15, with different Bi loadings were synthesized by a direct hydrothermal method. The materials were characterized in detail by various techniques. Powder‐X‐ray‐diffraction (PXRD), N2‐adsorption/desorption, and transmission‐electron‐microscopic (TEM) analyses revealed that the well‐ordered hexagonal structure of SBA‐15 is maintained after Bi incorporation. Diffuse‐reflectance UV/VIS, Raman, and X‐ray photoelectron spectroscopy (XPS) showed that the incorporated Bi‐atoms are highly dispersed, most of them entering the internal surface of SBA‐15. The new, very stable catalysts were found to be highly efficient for the oxidation of cyclohexane in a solvent‐free system, molecular oxygen (O2) being used as oxidant.  相似文献   

12.
A wide range of N‐arylated indoles were selectively synthesized through intermolecular C(aryl)? N bond formation from the corresponding aryl iodides and indoles through Ullmann‐type coupling reactions in the presence of a catalytic amount of Pd immobilized on amidoxime‐functionalized mesoporous SBA‐15 (SBA‐15/AO/Pd(0)) under mild reaction conditions. These cross‐coupled products were obtained in excellent yields under mild conditions at extremely low palladium loading (ca 0.3 mol%), and the heterogeneous catalyst can be readily recovered by simple filtration and reused seven times with loss in its activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A novel strategy to synthesize a functional mesoporous material for efficient removal of cesium is reported. Specifically, Prussian blue derivate‐modified SBA‐15 (SBA‐15@FC) was prepared by photoinitiated thiol–ene reaction between thiol‐modified SBA‐15 and pentacyano(4‐vinyl pyridine)ferrate complex. The effects of weight percentage of the Prussian blue derivate, pH, adsorbent dose, co‐existing ions, and initial concentration were evaluated on the adsorption of cesium ions. The adsorption kinetically follows a pseudo‐second‐order model and reaches equilibrium within 2 h with a high adsorption capacity of about 13.90 mg Cs g?1, which indicates that SBA‐15@FC is a promising adsorbent to effectively remove cesium from aqueous solutions.  相似文献   

14.
A series of ordered mesoporous organic–inorganic hybrid material was designed by using the amine‐functionalized SBA‐15 (PdX2@SBA‐15/NY, Y = 1, 2) as solid support for palladium complexes. Among them, the Pd(OAc)2/ethylenediamine complex encapsulated into SBA‐15 (Pd(OAc)2@SBA‐15/PrEn or Pd(OAc)2@SBA‐15/PrNHEtNH2) exhibits higher activity and selectivity toward Suzuki cross‐coupling reaction under aerobic conditions and water solvent mixture. The SBA‐15/PrEn supported palladium pre‐catalyst could be separated easily from reaction products and used repetitively several times, showing its superiority over homogeneous catalysts for industrial and chemical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A stable nickel‐decorated SBA‐15 nanocomposite (Ni/TCH@SBA‐15) was synthesized through surface modification of silica nanoparticles with 3‐chloropropyltriethoxysilane (CPTES) and thiocarbohydrazide (TCH) followed by metal–ligand coordination with Ni (II). The structure of this organometallic nanocomposite was characterized by Fourier transform‐infrared, field emission‐scanning electron microscopy, EDAX, transmission electron microscopy, atomic absorption spectroscopy and N2 adsorption–desorption (Brunauer–Emmett–Teller) techniques. The catalytic performance of Ni/TCH@SBA‐15 (NNTS‐15) was determined for the synthesis of 2‐aryl‐substituted benzimidazoles and 2,3‐dihydroperimidines. The excellent yields within shorter reaction times, simplicity of catalytic methods, non‐toxicity and clean reactions, mild reaction conditions and easy work‐up procedure are the important merits of these synthetic protocols. Moreover, the Ni (II) bonded to the SBA‐15 surface was stable under the catalytic reaction conditions resulting in its efficient recycling and reuse.  相似文献   

16.
A novel poly(aniline‐coo‐aminophenol) (PAOA)/mesoporous silica SBA‐15 nanocomposite was synthesized and investigated for adsorption of Hg (II) from aqueous solutions of wide pH range. A chemical oxidation method was employed for polymerization of aniline and o‐aminophenol on an ordered SBA‐15 template to obtain a significantly enlarged BET surface area of the adsorbent. Efficiency study revealed that the PAOA/SBA‐15 could reach a maximum Hg (II) adsorption capacity of over 400 mg/g. Kinetic study showed that the Hg (II) adsorption by the PAOA/SBA‐15 fitted a pseudo‐second‐order kinetic model, indicating that the mercury adsorption process was predominantly controlled by chemical process. The results of this study also proved that the adsorbed Hg (II) could be effectively desorbed from the PAOA/SBA‐15 in 0.1M HCl and 5% sulfocarbonide solutions. Associated adsorption mechanism was also investigated by means of Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
An isatin‐based fluorophore, 3‐(pyrimidin‐2‐ylimino)indolin‐2‐one, was grafted on a large‐pore mesoporous silica material (SBA‐15) via a two‐step modification process. The obtained material (SBA‐Is‐Py) was characterized using various techniques and the characterization showed that the ordered porous structure was preserved after the post‐grafting procedure. The optical sensing ability of SBA‐Is‐Py was studied upon the addition of a variety of metal ions and a marked fluorescence quenching by Hg2+ ion was observed. SBA‐Is‐Py exhibited excellent Hg2+‐specific luminescence quenching over various competing cations. Furthermore, linear changes of the optical properties of SBA‐Is‐Py as a function of the concentrations of Hg2+ ion were found, with a calculated detection limit of 3.28 × 10?7 M. In addition, SBA‐Is‐Py was successfully employed for the determination of Hg2+ in real water samples.  相似文献   

18.
Magnetic mesoporous silica was prepared via embedding magnetite nanoparticles between channels of mesoporous silica (SBA‐15). The prepared composite (Fe3O4@SiO2‐SBA) was then reacted with 3‐chloropropyltriethoxysilane, sodium imidazolide and 2‐bromopyridine to give 3‐(pyridin‐2‐yl)‐1H‐imidazol‐3‐iumpropyl‐functionalized Fe3O4@SiO2‐SBA as a supported pincer ligand for Pd(II). The functionalized magnetic mesoporous silica was further reacted with [PdCl2(SMe2)2] to produce a supported N‐heterocyclic carbene–Pd(II) complex. The obtained catalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area measurement and X‐ray diffraction. The amount of the loaded complex was 80.3 mg g?1, as calculated through thermogravimetric analysis. The formation of the ordered mesoporous structure of SBA‐15 was confirmed using low‐angle X‐ray diffraction and transmission electron microscopy. Also, X‐ray photoelectron spectroscopy confirmed the presence of the Pd(II) complex on the magnetic support. The prepared magnetic catalyst was then effectively used in the coupling reaction of olefins with aryl halides, i.e. the Heck reaction, in the presence of a base. The reaction parameters, such as solvent, base, temperature, amount of catalyst and reactant ratio, were optimized by choosing the coupling reaction of 1‐bromonaphthalene and styrene as a model Heck reaction. N‐Methylpyrrolidone as solvent, 0.25 mol% catalyst, K2CO3 as base, reaction temperature of 120°C and ultrasonication of the catalyst for 10 min before use provided the best conditions for the Heck cross‐coupling reaction. The best results were observed for aryl bromides and iodides while aryl chlorides were found to be less reactive. The catalyst exhibited noticeable stability and reusability.  相似文献   

19.
Using high‐resolution transmission electronic micrograph (HR‐TEM) observation, one can clearly see the pore geometry of the MCM‐41 and SBA‐15 mesoporous silicas to determine that their pore shapes are hexagonal and round, respectively. With the perpendicular orientations of the nanochannels to the electron beam, parallel line images of the (100) and (110) repeating spacings were observed. In the SBA‐15 mesoporous silicas, there are byproducts of the granular silica and disordered mesostructures, attributed to the weak hydrogen interactions between Pluronic 123 blockcopolymer and the silica species. There are also many different and significant +π disclination defects in SBA‐15 and MCM‐41 surfactant‐silica composites. The SBA‐15 with a thicker silica wall is more stable under irradiation by high‐energy electron beams compared to MCM‐41, which has thinner wall thickness. Some carbon nanostructure impurities were found in some carbon films on the metal grids.  相似文献   

20.
Mesoporous SBA‐15 was synthesized and modified with 3‐chloropropyltrimethoxysilane and then used in immobilization of creatinine groups, which were employed to introduce Y3+ and Ce3+ to give rise to two novel yttrium and cerium catalysts: SBA‐15@Creatinine@M (M = Y and Ce). The structures of the SBA‐15@Creatinine@M catalysts were determined using various techniques. These catalysts offered outstanding catalytic performances in the oxidation of sulfides to sulfoxides and in the preparation of 5‐substituted 1H‐tetrazoles. An important characteristic of the SBA‐15@Creatinine@M catalysts is that they are very stable without a considerable decrease in their catalytic performance lasting seven cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号