首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From environmental and economic points of view, it is highly desirable to develop a clean and efficient catalytic process to produce epoxides. An attractive approach is to use a solid, recyclable catalyst and molecular oxygen as the oxidant without any sacrificial reductant or other additives. Nonetheless, the catalysts reported up to now still cannot balance catalytic activity with epoxide selectivity. It is of great importance to explore novel catalysts with both high activity and selectivity for the epoxidation of olefins. In this work, cobalt(II) acetylacetonate (Co(acac)2) was covalently bonded to the silica surface of SBA‐15 molecular sieve by multi‐step grafting using 3‐aminopropytrimethoxysilane (APTS) as coupling agent. Characterizations with nitrogen physisorption, X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis suggested that the metal complex was successfully immobilized on the aminosilane‐modified SBA‐15 surface and the channel structure remained intact. The synthesized Co(acac)2APTS@SBA‐15 catalyst was used in the epoxidation of trans‐stilbene (TS) with molecular oxygen. Compared to the sample prepared by the impregnation method as well as Co(acac)2 solutions under the same reaction conditions, the Co(acac)2 immobilized catalyst exhibited remarkably higher TS conversion and trans‐stilbene oxide (TSO) selectivity. An increase in TS conversion with Co content was observed when the Co loading was lower than 0.70% and the 0.70Co(acac)2APTS@SBA‐15 sample exhibited the best catalytic performance. Up to 50.1% of TS conversion could be achieved within 6 h, affording TSO selectivity as high as 96.7%. The superior catalytic performance of this particular catalyst is attributed to the high activity of the immobilized Co(acac)2 species on SBA‐15. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
《中国化学》2017,35(10):1619-1626
A series of SBA‐15‐supported chromia‐ceria catalysts with 3% Cr and 1%–5% Ce (3Cr‐Ce/SBA) were prepared using an incipient wetness impregnation method. The catalysts were characterized by XRD, N2 adsorption, SEM, TEM‐EDX, Raman spectroscopy, UV–vis spectroscopy, XPS and H2‐TPR, and their catalytic performance for isobutane dehydrogenation with CO2 was tested. The addition of ceria to SBA‐15‐supported chromia improves the dispersion of chromium species. 3Cr‐Ce/SBA catalysts are more active than SBA‐15‐supported chromia (3Cr/SBA), which is due to a higher concentration of Cr6+ species present on the former catalysts. The 3Cr‐3Ce/SBA catalyst shows the highest activity, which gives 35.4% isobutane conversion and 89.6% isobutene selectivity at 570 °C after 10 min of the reaction.  相似文献   

3.
《先进技术聚合物》2018,29(4):1322-1333
This work aims to develop novel composites from a poly(L ‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG) terpolymer and mesoporous silica (SBA‐15) nanofillers surface modified by post‐synthetic functionalization. SBA‐15 first reacts with a silane coupling agent, γ‐aminopropyl‐trimethoxysilane to introduce ammonium group. PLLA chains were then grafted on the surface of SBA‐15 through ammonium initiated ring‐opening polymerization of L ‐lactide. Composites were prepared via solution mixing of PLTG terpolymer and surface modified SBA‐15. The structures and properties of pure SBA‐15, γ‐aminopropyl‐trimethoxysilane modified SBA‐15 (H2N‐SBA‐15), PLLA modified SBA‐15 (PLLA‐NH‐SBA‐15), and PLTG/PLLA‐NH‐SBA‐15 composites were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, N2 adsorption‐desorption, differential scanning calorimetry, contact angle measurement, and mechanical testing. The results demonstrated that PLLA chains were successfully grafted onto the surface of SBA‐15 with grafting amounts up to 16 wt.%. The PLTG/PLLA‐NH‐SBA‐15 composites exhibit good mechanical properties. The tensile strength, Young's modulus, and elongation at break of the composite containing 5 wt.% of PLLA‐NH‐SBA‐15 were 39.9 MPa, 1.3 GPa, and 273.6%, respectively, which were all higher than those of neat PLTG or of the composite containing 5 wt.% of pure SBA‐15. Cytocompatibility tests showed that the composites present very low cytotoxicity.  相似文献   

4.
A series of ordered mesoporous organic–inorganic hybrid material was designed by using the amine‐functionalized SBA‐15 (PdX2@SBA‐15/NY, Y = 1, 2) as solid support for palladium complexes. Among them, the Pd(OAc)2/ethylenediamine complex encapsulated into SBA‐15 (Pd(OAc)2@SBA‐15/PrEn or Pd(OAc)2@SBA‐15/PrNHEtNH2) exhibits higher activity and selectivity toward Suzuki cross‐coupling reaction under aerobic conditions and water solvent mixture. The SBA‐15/PrEn supported palladium pre‐catalyst could be separated easily from reaction products and used repetitively several times, showing its superiority over homogeneous catalysts for industrial and chemical applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A strategy has been developed for the synthesis, characterization and catalysis of magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd core‐shell structure supported catalyst. The P(GMA‐EGDMA) polymer layer was coated on the surface of hollow magnetic Fe3O4 microspheres through the effect of KH570. The core‐shell magnetic Fe3O4/P(GMA‐EGDMA) modified by ‐NH2 could be grafted with HPG. Then, the hyperbranched glycidyl (HPG) with terminal ‐OH were modified by ‐COOH and adsorbed Pd nanoparticles. The hyperbranched polymer layer not only protected the Fe3O4 magnetic core from acid–base substrate corrosion, but also provided a number of functional groups as binding sites for Pd nanoparticles. The prepared catalyst was characterized by UV–vis, TEM, SEM, FTIR, TGA, ICP‐OES, BET, XRD, DLS and VSM. The catalytic tests showed that the magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd catalyst had excellent catalytic performance and retained 86% catalytic efficiency after 8 consecutive cycles.  相似文献   

6.
Mesoporous SBA‐15 was synthesized and modified with 3‐chloropropyltrimethoxysilane and then used in immobilization of creatinine groups, which were employed to introduce Y3+ and Ce3+ to give rise to two novel yttrium and cerium catalysts: SBA‐15@Creatinine@M (M = Y and Ce). The structures of the SBA‐15@Creatinine@M catalysts were determined using various techniques. These catalysts offered outstanding catalytic performances in the oxidation of sulfides to sulfoxides and in the preparation of 5‐substituted 1H‐tetrazoles. An important characteristic of the SBA‐15@Creatinine@M catalysts is that they are very stable without a considerable decrease in their catalytic performance lasting seven cycles.  相似文献   

7.
Qin  Yutian  Wang  Bowei  Li  Jiayi  Wu  Xingchun  Chen  Ligong 《Transition Metal Chemistry》2019,44(7):595-602

Aerobic epoxidation of alkene is a green and economical route to produce epoxides. For such reaction, transition metal complexes exhibit favorable catalytic activity. In this work, NH2-MIL-101, a stable metal–organic framework (MOF) material with large surface area and high pore volume, was functionalized with pyridine-2,6-dicarbaldehyde and Co(NO3)2, to realize the immobilization of Co(II) via imine–pyridine–carbonyl (N,N,O) tridentate ligands bonding to MOF skeleton. The modified materials were applied as heterogeneous catalysts for the aerobic epoxidation of cyclohexene at ambient temperature, and multiple factors were studied to explore their influences on catalytic effects. Under the optimal reaction conditions, satisfactory substrate conversion and epoxide selectivity were reached. In addition, this catalytic system is suitable for a variety of alkene substrates. Furthermore, recycle experiments and infrared spectroscopy characterization illustrated that the coordination surroundings of Co are altering smoothly during the reaction process, thus having an impact on the performance of catalyst.

  相似文献   

8.
Well distributed Pd‐Cu bimetallic alloy nanoparticles supported on amine‐terminated ionic liquid functional three‐dimensional graphene (3D IL‐rGO/Pd‐Cu) as an efficient catalyst for Suzuki cross‐coupling reaction has been prepared via a facile synthetic method. The introduction of IL‐NH2 cations on the surface of graphene sheets can effectively avoid the re‐deposition of graphene sheets, allowing the catalyst to be reused up to 10 cycles. The addition of Cu not only saves cost but also ensures high catalytic efficiency. It is worthy to note that the catalyst 3D IL‐rGO/Pd2.5Cu2.5 can efficiently catalyze the Suzuki cross‐coupling reaction with the yield up to 100% in 0.25 h, almost one‐fold higher than that by the pristine IL‐rGO/Pd2.5 catalyst (52%). The Powder X‐Ray Diffraction (XRD), combining energy dispersive X‐ray spectroscopy (EDS) mapping results confirm the existence and distribution of Pd and Cu in the bimetallic nanoparticles. The transmission electron microscopy (TEM) reveals the nanoparticle size with an average diameter of 3.0 ± 0.5 nm. X‐ray photoelectron spectroscopy (XPS) analysis proved the presence of electron transfer from Cu to Pd upon alloying. Such alloying‐induced electronic modification of Pd‐Cu alloy and 3D ionic liquid functional graphene with large specific surface area both accounted for the catalytic enhancement.  相似文献   

9.
A stereoselectivity switchable polymerization of isoprene has been developed, which is catalyzed by iminoimidazole‐Co(II) and ‐Fe(II) complexes. The influence of substituents ranging from electron donating to the electron withdrawing on the iminoimidazole‐Co(II) and ‐Fe(II) catalysts is investigated for isoprene polymerization. Two sets of iminoimidazole‐Co(II) and ‐Fe(II) complexes have been prepared and fully characterized. X‐ray crystallography analysis reveals that the complexes Co1 and Fe1 adopt distorted tetrahedral geometries. In the presence of AlEt2Cl as co‐catalyst, all the Co(II) complexes are active and the catalytic activity is highly dependent on the molar ratio of Al/Co. All the Co(II) complexes exhibit higher activities at low Al/Co ratio. Compared with the Co(II) complexes, the Fe(II) complexes are essentially inactive under the identical condition. However, on activation with combination of AlEtCl2 and [Ph3C][B(C6F5)4], both Co(II) and Fe(II) complexes display high activities with good conversions of isoprene (up to >99%). Additionally, low molecular weight and high trans‐1,4‐unit (>96%) selectivity are characteristics of the resultant polyisoprene. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 767–775  相似文献   

10.
In this paper, the effect of additive Fe on Ni/Al2O3 catalyst for CO2 methanation was studied. A series of bimetallic Ni–Fe catalysts with different Ni/Fe ratios were prepared by impregnation method. For comparison, monometallic Fe‐based and Ni‐based catalysts were also prepared by the same method. The characterization results showed that adding Fe to Ni catalyst on the premise of a low Ni loading(≦12 wt.%) enhanced CO2 methanation performance. However, when the Ni loading reached 12 wt.%, the catalytic activity decreased with the increase of Fe content, but still higher than the corresponding Ni‐based catalyst without Fe. Among them, the 12Ni3Fe catalyst exhibited the highest CO2 conversion of 84.3 % and nearly 100% CH4 selectivity at 50000 ml g‐1 h‐1 and 420 °C. The enhancement effect of adding Fe on CO2 methanation was attributed to the dual effect of suitable electronic environment and increased reducibility generated by Fe species.  相似文献   

11.
The palladium complex of MgO‐supported melamine‐formaldehyde polymer catalyst was prepared and characterized by X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The preparation of Nn‐octyl‐D ‐glucamine was investigated by using this complex as the catalyst. It was found that the palladium complex of MgO‐supported melamine‐formaldehyde polymer has a good catalytic activity for the hydrogenation of n‐octylamine with D ‐glucose to produce Nn‐octyl‐D ‐glucamine. The effects of additive, solvent, temperature, hydrogen pressure, Pd content in the catalyst and the amount of catalyst on the preparation of Nn‐octyl‐D ‐glucamine have all been studied. Under the optimum experimental conditions—D ‐glucose, 37.2 mmol; n‐octylamine, 31 mmol; triethylamine, 1.0 ml; ethanol, 60 ml; temperature, 333 K; hydrogen pressure, 1.5 MPa; the amount of the catalyst (Pd content 3.55%, N/Pd molar ratio 12), 0.7 g—the highest yield of Nn‐octyl‐D ‐glucamine (57.6%) was obtained. XRD results show that melamine‐formaldehyde polymer changed the structure of MgO, and XPS results suggest that coordination bonds were formed between the hexatomic ring and metal atom, and palladium particles were immobilized on the polymer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
LI Hui  LIU Jun  YANG Haixia  LI Hexing 《中国化学》2009,27(12):2316-2322
Co‐B amorphous alloy catalysts supported on three kinds of mesoporous silica (common SiO2, MCM‐41 and SBA‐15) have been systematically studied focusing on the effect of pore structure on the catalytic properties in liquid‐phase hydrogenation of cinnamaldehyde to cinnamyl alcohol (CMO). Structural characterization of a series of different catalysts was performed by means of N2 adsorption, X‐ray diffraction, transmission electron microscopy, hydrogen chemisorption, and X‐ray photoelectron spectroscopy. Various characterizations revealed that the pore structure of supports profoundly influenced the particle size, location and dispersion degree of Co‐B amorphous alloys. Co‐B/SBA‐15 was found more active and selective to CMO than either Co‐B/SiO2 or Co‐B/MCM‐41. The superior catalytic activity could be attributed to the higher active surface area, because most of Co‐B nanoparticles in Co‐B/SBA‐15 were located in the ordered pore channels of SBA‐15 rather than on the external surface as found in Co‐B/SiO2 and Co‐B/MCM‐41. Meanwhile, the geometrical confinement effect of the ordered mesoporous structure of SBA‐15 was considered to be responsible for the enhanced selectivity to CMO on Co‐B/SBA‐15, inhibiting the further hydrogenation of CMO to hydrocinnamyl alcohol.  相似文献   

13.
The effect of weak base modification on the catalytic performance of ZSM‐5 catalyst for conversion of methanol to aromatics was investigated. The catalysts were characterized using X‐ray diffraction, X‐ray fluorescence, N2 adsorption–desorption, NH3 temperature‐programmed desorption, Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetry. The results showed that catalysts treated with weak base (NaHCO3, Na2CO3 and NH3⋅H2O) exhibited a pore structure with interconnected micropores and mesopores. The existence of mesopores was beneficial for improving the diffusion of reactants and products, and the coke deposition resistance capacity of treated catalysts was enhanced greatly. Meanwhile, compared to traditional ZSM‐5 zeolite, the ratio of Brønsted to Lewis (B/L) acid sites of ZSM‐5/NH3⋅H2O (B/L = 7.35) zeolite slightly increased but the amount of acid sites reduced, while those of ZSM‐5/NaHCO3 (B/L = 0.127) and ZSM‐5/Na2CO3 (B/L = 0.107) significantly reduced. Further, the catalyst treated with NH3⋅H2O solution was evaluated in the methanol to aromatics reaction and led to an enhanced aromatization reaction rate. The liquid hydrocarbons product distribution exhibited higher aromatic hydrocarbons yield (56.12%) and selectivity (40.28%) of benzene, toluene and xylene (BTX) with isoparaffin content reducing to 26.17%, which could be explained by appropriate B/L acid sites ratio, higher pore volumes and higher surface area.  相似文献   

14.
《中国化学会会志》2018,65(6):760-770
In this paper, the gas‐phase fluorination of hexachlorobutadiene (HCBD) to synthesize 1,2‐dichlorotetrafluorocyclobutene (DTB) was carried out over a series of Cr/M/Zn catalysts (M = Ni, Co, Cu, In, Al). The influence of prefluorination by different fluorinating agents (HF, 95%HF + 5%Cl2, 95%HF + 5%O2, CF2O, CF2Cl2) on catalytic performance of Cr/Co/Zn sample was also investigated. The addition of prompters to the Cr/Zn catalyst improved remarkably its catalytic properties. The Cr/Ni/Zn catalyst exhibited the best catalytic activity (1.318 mmol/h/g) at 390 °C and the Cr/Co/Zn catalyst showed the best DTB selectivity (42.5%) at 350 °C. Compared to that of gaseous HF, the catalytic performance of the Cr/Co/Zn catalyst after treatment by HF + O2 and CF2O increased considerably, whereas for HF + Cl2 and CF2Cl2 it showed little effect. In order to identify the different species (Cr─O, Cr─F, CrO xF y) present on catalysts’ surface and determine their exact role, these catalysts before and after the reaction were characterized by X‐ray photoelectron spectroscopy. It was found that the concentration of the various species was responsible for the activity and lifetime of catalysts. Moreover, a possible reaction route is proposed based upon the product distribution. The most feasible formation pathway of DTB proceeded via the cyclization of C4Cl4F2 or C4Cl3F3 to yield c‐C4Cl4F2 and c‐C4Cl3F3 followed by further the Cl/F exchange.  相似文献   

15.
Hydrogenation of acetophenone over nano‐Cu/SiO2 catalysts was investigated. The catalysts, prepared by a liquid precipitation method using various precipitating agents, were characterized using low‐temperature nitrogen adsorption, X‐ray diffraction, temperature‐programmed desorption of ammonia, hydrogen temperature‐programmed reduction, transmission electron microscopy and X‐ray photoelectron spectroscopy. It was found that the catalysts prepared by a homogeneous precipitation method had better activity and stability than those prepared by a co‐precipitation method. The catalyst prepared using urea as precipitating agent had well‐dispersed copper species, high surface area and abundant pore structure. The catalytic performance and mechanism of the Cu/SiO2 catalysts were further studied. It was found that the activity and stability of the catalysts could be improved by adjusting the proportion of Cu+/(Cu+ + Cu0). The sample prepared using urea as precipitating agent presented higher activity and selectivity. Also, the catalyst prepared using urea maintained a high catalytic performance while being continuously used for 150 h under the optimal reaction conditions.  相似文献   

16.
Novel heterogeneous tungsten species in mesoporous silica SBA‐16 catalysts based on ship‐in‐a‐bottle methodology are originally reported for oxidizing cyclopentene (CPE) to glutaric acid (GAC) using hydrogen peroxide (H2O2). For all W‐SBA‐16 catalysts, isolated tungsten species and octahedrally coordinated tungsten oxide species are observed while WO3 crystallites are detected for the W‐SBA‐16 catalysts with Si/ W = 5, 10, and 20. The specific surface areas and the corresponding total pore volumes decrease significantly as increasing amounts of tungsten incorporated into the pores of SBA‐16. Using tungsten‐substituted mesoporous SBA‐16 heterogeneous catalysts, high yield of GAC (55%) is achieved with low tungsten loading (for Si/W = 30, ~13 wt%) for oxidation of CPE. The W‐SBA‐16 catalysts with Si/W = 30 can be reused five times without dramatic deactivation. In fact, low catalytic activity provided by bulk WO3 implies that the highly distributed tungsten species in SBA‐16 and the steric confinement effect of SBA‐16 are key elements for the outstanding catalytic performance.  相似文献   

17.
Catalytic direct dehydrogenation of methanol to formaldehyde was carried out over Ag‐SiO2‐MgO‐Al2O3 catalysts prepared by sol‐gel method. The optimal preparation mass fractions were determined as 8.3% MgO, 16.5% Al2O3 and 20% silver loading. Using this optimum catalyst, excellent activity and selectivity were obtained. The conversion of methanol and the selectivity to formaldehyde both reached 100%, which were much higher than other previously reported silver supported catalysts. Based on combined characterizations, such as X‐ray diffraction (XRD), scanning electronic microscopy (SEM), diffuse reflectance ultraviolet‐visible spectroscopy (UV‐Vis, DRS), nitrogen adsorption at low temperature, temperature programmed desorption of ammonia (NH3‐TPD), desorption of CO2 (CO2‐TPD), etc., the correlation of the catalytic performance to the structural properties of the Ag‐SiO2‐ MgO‐Al2O3 catalyst was discussed in detail. This perfect catalytic performance in the direct dehydrogenation of methanol to formaldehyde without any side‐products is attributed to its unique flower‐like structure with a surface area less than 1 m2/g, and the strong interactions between neutralized support and the nano‐sized Ag particles as active centers.  相似文献   

18.
Boehmite nano‐particles with a high degree of surface hydroxyl groups were covalently functionalized by 3‐(trimethoxysilyl)‐propylamine to support H3[PMo12O40], H3[PW12O40], H4[SiMo12O40] and H4[SiW12O40] Keggin‐type heteropolyacids. After characterization of these catalysts by FT‐IR, powder X‐ray diffraction, TG/differential thermal analysis, CHN, inductively coupled plasma and transmission electron microscopy techniques, they were applied to the epoxidation of cis‐cycloocten. The progress of the reactions was investigated by gas–liquid chromatography, and the catalytic procedures were optimized for the parameters involved, such as the solvent and oxidant. The results showed that 25 mg of supported H3[PMo12O40] catalyst in 1 ml C2H4Cl2 with 0.5 mmol cyclooctene and 1 mmol tert‐butylhydroperoxide at reflux temperature gave 98% yield over 15 min. Recycling experiments revealed that these nanocatalysts could be repeatedly applied up to five times for a nearly complete epoxidation of cis‐cycloocten. The optimized experimental conditions were also used successfully for the epoxidation of some other alkenes, such as cyclohexene, styrene and α‐methyl styrene.  相似文献   

19.
Mo2C/Al2O3 catalyst was prepared by the impregnation method with urotropine and ammonium paramolybdate. The catalytic effect of Mo2C as a typical transition‐metal carbide in sulfur‐resistant methanation was studied. The catalysts prepared were characterized by N2 adsorption–desorption, X‐ray diffraction, transmission electron microscopy, H2‐temperature‐programmed reduction, and Raman spectra, with the results confirming the formation of β‐molybdenum carbide on the surface of the catalysts. Studies on catalysts with different loading doses indicate that the optimal loading of Mo2C/Al2O3 is about 15 wt.%, which enables CO conversion rate of up to 47%, with methane selectivity of up to 53%. This work further explored the effect of different concentrations of H2S in the raw gas on the performance of the catalyst, with the results showing that high concentration of H2S (>1500 ppm) can lead to sulfuration of active species on the catalyst, while resulting in a decrease in the catalytic activity.  相似文献   

20.
A novel Mo(VI) tetradentate Schiff base complex based on two pyrrole‐imine donors was anchored covalently on Fe3O4 nanoparticles and characterized using physicochemical techniques. The catalytic epoxidation process was optimized in terms of the effects of solvent, reaction temperature, kind of oxidant and amount of oxidant and catalyst. Then the novel heterogeneous nanocatalyst was used for the efficient and selective catalytic epoxidation of internal alkenes (cyclohexene, cyclooctene, α‐pinene, indene and trans ‐1,2‐diphenylethene) and terminal alkenes (n ‐heptene, n ‐octene, n ‐dodecene and styrene) using tert ‐butyl hydroperoxide (70% in water) as oxidant in 1,2‐dichloroethane as solvent. The prepared nanocatalyst is very effective for the selective epoxidation of cis ‐cyclooctene with 100% conversion, 100% selectivity and turnover frequency of 1098 h−1 in just 30 min. The magnetic nanocatalyst was easily recovered using an external magnetic field and was used subsequently at least six times without significant decrease in conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号