首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
邓筠飞  杜卫民  王梦瑶  位庆贺 《应用化学》2019,36(11):1323-1332
以玉米秸秆为原料,合成了高比表面积(2167 m2/g)的多孔生物质炭材料。 优化实验条件即可获得性能最佳的生物质炭电极材料,其在电流密度为1 A/g时的比电容高达390 F/g。 更重要的是,以所得最佳多孔生物质炭为电极材料,3 mol/L 的KOH溶液为电解质,组装了液相对称超级电容器。 该超级电容器在功率密度为818 W/kg时,其能量密度高达7 Wh/kg,在循环10000圈后的电容保持率为91.1%。 同时,将两个这种超级电容器串联充电之后,能够点亮15个LED灯并驱动小风扇正常工作。 这些结果表明,将基于玉米秸秆的多孔生物质炭作为先进电极材料应用于超级电容器具有较大的实际应用价值。  相似文献   

2.
Porous carbon spheres represent an ideal family of electrode materials forsupercapacitors because of the high surface area,ideal conductivity,negligible aggregation,and ability to achieve space efficient packing.However,the development of new synthetic methods towards porous carbon spheres still remains a great challenge.Herein,N-doped hollow carbon spheres with an ultrahigh surface area of2044 m2/g have been designed based on the phenylenediamine-formaldehyde chemistry.When applied in symmetric supercapacitors with ionic electrolyte(EMIBF_4),the obtained N-doped hollow carbon spheres demonstrate a high capacitance of 234 F/g,affording an ultrahigh energy density of 114.8 Wh/kg.Excellent cycling stability has also been achieved.The impressive capacitive performances make the phenylenediamine-formaldehyde resin derived N-doped carbon a promising candidate electrode material for supercapacitors.  相似文献   

3.
Dairy manure, one of the most abundant agricultural wastes generated in livestock farming, was pretreated with KOH aqueous solution to relieve the constraint of lignin, thus facilitating cellulose hydrolysis. The generated black liquor waste was used to prepare porous carbon. Glucose yield of 261 g/kg was obtained from dairy manure pretreated in 0.73 wt% HCl aqueous solution, much higher than that obtained from crude dairy manure (116 g/kg). The generated black liquor, mainly containing lignin and KOH, was employed to prepare porous carbon via a self-templating method. The obtained material had a three-dimensional (3D) hierarchical structure and was applied for supercapacitors. Good capacitance of 202 F/g was obtained in a two-electrode system with 6 M KOH electrolyte. The porous carbon-based electrode showed excellent cycling stability with retention of 100% after 3000 galvanostatic charge–discharge (GCD) cycles. This work provides a scalable strategy for comprehensive utilization of lignocellulosic biomass resources.  相似文献   

4.
《中国化学快报》2020,31(7):1986-1990
Biomass-derived porous carbon with developed pore structure is critical to achieving high performance electrode materials. In this work, we report a grape-based honeycomb-like porous carbon (GHPC) prepared by KOH activation and carbonization, followed by N-doping (NGHPC). The obtained NGHPC exhibits a unique honeycomb-like structure with hierarchically interconnected micro/mesopores, and high specific surface area of 1268 m2/g. As a supercapacitor electrode, the NGPHC electrode exhibits a remarkable specific capacitance of 275 F/g at 0.5 A/g in a three-electrode cell. Moreover, the NGHPC//NGHPC symmetric supercapacitor displays a high energy density of 12.6 Wh/kg, and excellent cycling stability of approximately 95.2% capacitance retention after 5000 cycles at 5 A/g. The excellent electrochemical performance of NGHPC is ascribed to its high specific surface area, honeycomb-like structure and high-content of pyrodinic-N (36.29%). It is believed that grape-based carbon materials show great potential as advanced electrode materials for supercapacitors.  相似文献   

5.
Biomass-derived porous carbons show great potential as electrode materials for supercapacitors due to the environmental friendliness. However, most of the carbonaceous electrode materials suffer from low specific capaci-tance and rate capacity because of the poor porosity. Here, we reported a simple and effective approach to prepare micro/nano-hierarchical structured carbon materials derived from rice husk by NaOH-KOH molten salt co-activation. The as-prepared activated carbons exhibit high porosity and suitable pore size distributions for more electrolyte ion adsorption, which are all beneficial for achieving remarkable electrochemical performances, such as high specific capacitance(194.6 F/g), excellent rate capability(retention of 85.9%) and outstanding cycling stability. Thus, the above biomass-derived carbon materials with high porosity and micro/nano structures obtained by co-activation method offered a new insight into novel electrode material for the use in energy storage systems with high energy density and excellent rate performance.  相似文献   

6.
Biomass had been extensively explored and applied in many fields due to their abundance, attractive structure, low cost, renewability, and environmental friendliness. Cottonseed meal (CM), one of the by-products of cotton, consisted of much crude protein, fiber, and inorganic ions, was a potential carbon precursor. In this work, CM was used to prepare N, S, and O self-doped carbon materials by two steps (hydrothermal pre-carbonization and K2CO3 carbonization–activation) processes. The optimized material displayed high capacitive performance, which benefited from the large surface area (2361 m2/g), hierarchical porous structure and rich multi-heteroatoms doping of the prepared porous carbon. What's more, we prepared a new-type K2CO3-based deep eutectic solvent (DES) electrolyte. The assembled symmetric device using DES electrolyte displayed a superior energy density (34.4 Wh/kg) at room temperature. Furthermore, the energy density could reach 36.5 Wh/kg when the temperature rose to 50 °C. Even under extreme conditions, the device delivered a not particularly bad energy density (11.8 Wh/kg at ?25 °C and 8.6 Wh/kg at 105 °C). This study provided an efficient and simple method to prepare CM-based heteroatoms self-doped porous carbon materials and uncovered a new possibility for the exploitation of carbon-based supercapacitors with high energy density.  相似文献   

7.
In this work, we proposed a facile one-pot pyrolysis method to conveniently manufacture lignin-derived carbon materials with graded porous construction for use in supercapacitors. The renewable lignin was selected as precursor, while the potassium citrate was used as a pore-forming agent. The properties of the prepared lignin-derived carbon (LAC) and the performance for supercapacitor application were thoroughly evaluated. The LAC at optimal preparation conditions shows a layered porous structure with a large specific surface area of 3174 cm2 g−1 and pore volume of 2.796 cm3 g−1, where the specific capacitance reach to 241 F g−1 at 1 A g−1 scan rate in 6 M KOH electrolyte solution. At the same time, the specific capacitance remains at 220 F g−1 even at an excessive scan velocity of 20 A g−1, while the capacitance retention is still close to 91.3%. The capacitance retention rate is stable above 95% after 10,000 charge/discharge cycles, which shows the desired long-time stability. All these results demonstrate the outstanding properties of the new prepared LAC material and the considerable application potential in the field of electrical energy storage.  相似文献   

8.
植物基多孔炭具有发达的孔结构、大的表面积、较为成熟的制备工艺、丰富的来源、低廉的价格,是目前商业应用范围最广的超级电容器电极材料。然而在实际应用中仍然存在着质量/体积比容量较低、倍率性能差等问题。本文针对先进电容器件的高能量密度、优异功率性能的要求,首先介绍了近年来发展的植物基多孔炭的制备方法,讨论了植物前驱体的组成和结构对其产物结构的影响以及与其电化学性能之间的构效关系,特别总结了近年来植物基超大比表面积多孔炭、中孔炭、层次化多孔炭的制备方法和电容储能性能。针对大比表面积多孔炭用于超级电容器时的体积性能不佳这一关键问题,本文还总结了提高植物基多孔炭体积电化学性能的方法。最后,对植物基多孔电极材料存在的问题进行了分析与总结,并展望了其研究前景。  相似文献   

9.
Bundle-type mutil-walled carbon nanotubes (MWCNTs) composite electrode is the first investigation and publication for the supercapacitor application. According to the thermogravimetric analysis results, as-synthesized BCNTs are considered as the electrode materials for supercapacitors and electrochemical double-layer capacitor in this study. The Brunauer–Emmett–Teller specific surface area of as-prepared bundled carbon nanotubes (BCNTs) is 95.29 m2/g given to a type III isotherm and H3 hysteresis loops. Slow scanning rates promote and enhance to achieve high Cb because of the superior conductivity of CNT bundles and one side close-layered Ni/Mg/Mo alloy inside the BCNT-based electrode and facile electron diffusivity between electrolyte and electrode. The specific capacitance Cs (1,560 F/g) is nearly equal to the maximum specific capacitance, which the BCNT-based composite electrode can actually be able to charge or fill in. The maximum energy density value is 195 Wh/kg with corresponding power density values of 0.21 kW/kg. Furthermore, the active 3D BCNTs material fabricated electrode enhances to contact the electrolyte directly and decreases the ion diffusion limitation. Electrochemical impedance spectroscopy spectrum summarized as the low-frequency area controls by mass transfer limitation, and the high-frequency area dominates by charge transfer of kinetic control. After 2,000 consecutive cyclic voltammetry sacnings and galvanostatic charge-discharge cycles at a current density of 1.67 A/g performs, the specific capacitance retentions of 3D BCNTs electrodes achieved 128.2 and 77.3%, respectively. Three-dimensional BCNT composite electrodes exhibit good conductivity and low charge transfer resistance, which is beneficial to fast charge transfer between the BCNTs electrode materials and electrolytes.  相似文献   

10.
马然  李晨  张熊 《化学通报》2017,80(8):745-750,759
以CO_2为原料,采用金属镁热还原法,制备出富含介孔结构的石墨烯材料。分别利用X射线衍射、扫描电镜、透射电镜、拉曼光谱和N_2吸附-脱附等测试手段对材料的微观结构进行了表征。通过在镁粉中加入不同质量的MgO,可以实现对石墨烯形貌和孔结构的调控,当MgO/Mg质量比为8∶1时,产物(MRG-8)具有均一的介孔结构(4nm)。并对材料的电化学性能进行了测试,在1mol/L KOH的电解液中,MRG-8具有最高的比电容(171F/g),同时具有非常好的倍率特性,循环测试12000周,比电容保持率为94%。当采用[EMIM][BF4]离子液体作为电解液,以MRG-8为电极材料组装成的对称型超级电容器显示出超高功率密度(175k W/kg),对应的能量密度为28.1Wh/kg。因此,采用此方法制备的介孔石墨烯材料在高功率的超级电容器领域具有潜在的应用前景。  相似文献   

11.
A facile, single-step hydrothermal route is followed to prepare ZnS nanowires with large aspect ratios. The obtained ZnS nanowires deposited on nickel foam (ZnS/Ni-foam) exhibit a specific capacitance of 781 F/g at a current density of 0.5 A/g. An asymmetric supercapacitor fabricated from ZnS/Ni-foam as a positive electrode and jute derived activated carbon coated on Ni-foam (JAC/Ni-foam) as a negative electrode attains a high specific capacitance of 573 F/g at a current density of 0.5 A/g, with an accompanying high energy density of 51 Wh/kg at a power density of 200 W/kg in an extensive operating potential window of 1.2 V. In addition, the ZnS//JAC asymmetric supercapacitor reveals long-term cyclic stability, after 10,000 GCD cycles the device sustain around ~87 % of the initial specific capacitance. These results shed enlighten a new opportunity for promising electrode materials in supercapacitors.  相似文献   

12.
张韩方  魏风  孙健  荆梦莹  何孝军 《电化学》2019,25(6):764-772
本文以稻壳为碳源,以离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)为模板和辅助活化剂制备了多孔炭材料(PCs). 多孔炭的比表面积达1438 m2·g-1,总孔容达0.75 cm3·g-1. 以PCs为超级电容器电极材料,6 mol·L-1的KOH溶液为电解液组装成扣式电池,在0.05 A·g-1的电流密度下,比电容高达256 F·g-1;当电流密度增大至10 A·g-1,其比电容仍保持在211 F·g-1,展现出好的倍率性能. 所得的多孔炭电极均表现出优异的循环稳定性. 这一工作以BMIMPF6作为模板和辅助活化剂,为合成生物质基超级电容器用多孔炭提供了一种新方法.  相似文献   

13.
In this work, porous carbon with a high specific surface area as electrode materials for supercapacitors are obtained by a carbonization process at various temperatures from 700 °C to 1000 °C without activation process using poly(vinylidene fluoride) (PVDF) as a carbon precursor. The electrochemical performance is characterized by cyclic voltammetry and galvanostatic charge–discharge cycling performance using two-electrode system in 6.0 M KOH as an aqueous electrolyte. The results indicate that carbonization temperature significantly affected the specific surface area and pore volume of the PVDF-derived carbons and their capacitive behavior. In particular, the electrochemical performance of the prepared PVDF-derived carbon is determined by both the electric double-layer capacitance and the pseudo-capacitance resulting from the residual surface functional groups on PVDF-derived carbons.  相似文献   

14.
《中国化学快报》2022,33(8):3961-3967
Hierarchical porous carbon (HPC) from bituminous coal was designed and synthesized through pyrolysis foaming and KOH activation. The obtained HPC (NCF-KOH) were characterized by a high specific surface area (SBET) of 3472.41 m2/g, appropriate mesopores with Vmes/Vtotal of 57%, and a proper amount of surface oxygen content (10.03%). This NCF-KOH exhibited a high specific capacitance of 487 F/g at 1.0 A/g and a rate capability of 400 F/g at 50 A/g based on the three-electrode configuration. As an electrode for a symmetric capacitor, a specific capacitance of 299 F/g at 0.5 A/g was exhibited, and the specific capacitance retained 96% of the initial capacity at 5 A/g after 10,000 cycles. Furthermore, under the power density of 249.6 W/kg in 6 mol/L KOH, a high energy density of 10.34 Wh/kg was obtained. The excellent charge storage capability benefited from its interconnected hierarchical pore structure with high accessible surface area and the suitable amount of oxygen-containing functional groups. Thus, an effective strategy to synthesize HPC for high-performance supercapacitors serves as a promising way of converting coal into advanced carbon materials.  相似文献   

15.
A facile fabrication strategy is reported to obtain N/O codoped porous carbon nanosheets for purpose of ameliorating the charge transfer and accumulation in the concentrated Li TFSI(lithium bis(trifluoromethane sulfonyl)imide) electrolyte. By tunning the feed ratio of comonomers, the porous nanosheet structure is endowed with a significant ion-adsorption surface area(1630 m2/g) and interconnected hierarchical porosity; meanwhile, high-level N/O dopants(N: 3.58 at%, O: 12.91 at%) incre...  相似文献   

16.
以未使用和使用氢氧化钠溶液处理的花生壳为碳源分别制备出微孔炭PSC-1和PSC-2.PSC-1和PSC-2的比表面积分别为552和726m2·g-1,其主要孔径都约为0.8nm.用PSC-1和PSC-2制备的电极和对称型超级电容器的循环伏安曲线均接近矩形,表明其具有良好的电容特性.在以微孔炭电极为工作电极、铂电极为对电极和银/氯化银电极为参比电极组成的三电极体系测量表明,在0.1A·g-1的电流密度下,PSC-1和PSC-2的比电容达到233和378F·g-1.经过1000次恒电流充放电循环后,在三电极体系和超级电容器中电极均表现出良好的稳定性和电容保持率.基于实验结果探讨了微孔炭的形成机理及其结构与电化学性质之间的联系.  相似文献   

17.
Electrical double-laye r capacitors are widely concerned fo r their high power density,long cycling life and high cycling efficiency.However,their wide application is limited by their low energy density.In this study,we propose a simple yet environmental friendly method to synthesize cobalt and nitrogen atoms co-doped porous carbon(CoAT-NC) material.Cobalt atoms connected with primarily pyridinic nitrogen atoms can be uniformly dispersed in the amorphous carbon matrix,which is benefit for improving electrical conductivity and density of states of the carbon material.Therefore,an enhanced perfo rmance is expected when CoAT-NC is served as electrode in a supercapacitor device.CoAT-NC displays a good gravimetric capacitance of 160 F/g at 0.5 A/g combing with outstanding capacitance retention of 90% at an extremely high current density of 100 A/g in acid electrolyte.Furthermore,a good energy density of30 Wh/kg can be obtained in the organic electrolyte.  相似文献   

18.
以纳米CaCO3为模板、蔗糖为前躯体制备超级电容器用介孔炭电极材料.材料的结构由氮吸附、TEM表征,借助恒流充放电、循环伏安和交流阻抗评价了其在6 mol.L-1KOH电解液中的电化学电容性能.结果表明,蔗糖基介孔炭的比表面积606 m2/g,富含10~30 nm的介孔.恒流放电法测得介孔炭在电流密度50 mA/g下的比电容为125 F/g,大电流倍率性能特别突出.电流密度增大到20 000 mA/g,比电容还保持有88F/g,远高于进口电容炭,该介孔炭是一种很有前景的高功率超级电容器炭电极材料.  相似文献   

19.
Sulfonated polyetheretherketone (SPEEK) has been synthesised by sulphonation process and used as the solid-state electrolyte, binder and surfactant for supercapacitors. Reduced graphene dispersed by SPEEK is used as a high-efficiency conducting additive in solid-state supercapacitors. It is found that SPEEK can improve the stability of the reduced graphene dispersion significantly, and therefore, the solid-state supercapacitors show a large decrease in IR drop and charge-transfer resistance (Rct), resulting in a higher rate capability. The solid-state supercapacitors with the activated carbon/reduced graphene/SPEEK/electrode can be operated from 1 to 8 A/g and exhibit capacity retention of 93%. The noteworthy is more than twice higher value for capacity retention by comparison with the solid-state supercapacitors using activated carbon/reduced graphene/PVDF electrode (capacity retention is 36%). The cell of reduced graphene with SPEEK can be cycled over 5000 times at 5 A/g with no capacitance fading.  相似文献   

20.
The massive discharge of biomass wastes not only causes waste of resources, but also pollutes the environment. Therefore, converting biomass wastes into carbon materials is an effective way to solve the above problems. Here, using biomass waste pig nails as raw materials and K2CO3 as chemical activators, the N-doped porous carbon(KPNC) is prepared by direct pyrolysis. As an electrode for supercapacitors, the electrochemical tests of KPNCs showed that they exhibited good electrochemical performance and excellent cycling stability. When the current density is 0.2 A/g, the specific capacitance is up to 344.6 F/g. Moreover, it still maintains 97.6% initial capacitance retention after 2000 cycles at a high current density of 5 A/g. Above exceptional electrochemical performances may be ascribed to an appropriate porous structure(Smicro/Stotal=80.31%, Vmicro/Vtotal=76.19%), high nitrogen contents(4.44%, atomic fraction), oxygen contents(9.13%, atomic fraction) as well as small internal resistance. The above experimental results show that the conversion of pig nails to porous carbon can reduce the waste of resources and alleviate environmental pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号