首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Perylene bisimides are among the most valuable functional dyes and have numerous potential applications. As a result of their chemical robustness, photostability, and outstanding optical and electronic properties, these dyes have been applied as pigments, fluorescence sensors, and n‐semiconductors in organic electronics and photovoltaics. Moreover, the extended quadrupolar π system of this class of dyes has facilitated the construction of numerous supramolecular architectures with fascinating photophysical properties. However, the supramolecular approach to the formation of perylene bisimide aggregates has been restricted mostly to organic media. Pleasingly, considerable progress has been made in the last few years in developing water‐soluble perylene bisimides and their application in aqueous media. This Review provides an up‐to‐date overview on the self‐assembly of perylene bisimides through π–π interactions in aqueous media. Synthetic strategies for the preparation of water‐soluble perylene bisimides and the influence of water on the π–π stacking of perylene bisimides as well as the resulting applications are discussed.  相似文献   

2.
Melamine-linked perylene bisimide dyes (MPBIs) bearing an ethylene or trimethylene group as linker moieties were synthesized, and their self-aggregation and coaggregation with cyanurates through complementary triple hydrogen bonds have been investigated. UV/vis studies revealed that both the MPBIs self-assemble in nonpolar organic solvent through pi-pi stacking interaction between perylene cores, giving self-aggregates with nearly identical thermal stabilities. Upon addition of 1 equiv of cyanurate components, however, the stabilities of the resulting aggregates were dramatically changed between the two systems, suggesting the formation of different types of hydrogen-bonded supramolecular species. Dynamic light scattering and atomic force microscopic studies revealed that the system featuring ethylene linker moieties generates a discrete dimer of MPBI supported by two cyanurate molecules, whereas the system featuring trimethylene linker moieties affords extended supramolecular polymers hierarchically organizing into nanoscopic fibers. These results demonstrate that it is possible to obtain distinct supramolecular species by just changing the number of carbon atoms at the linker moieties of MPBI components. The present strategy for the fabrication of discrete or polymeric supramolecular assemblies should be applicable to other functional pi-conjugated molecules.  相似文献   

3.
The unique self-assembling features of N-annulated perylene bisimides (PBIs) 1 and 2 are reported. The stability of the aggregates of diester 1 , in which no H-bonding interactions are operative, corroborates the significance of long-range van der Waals and dipole–dipole electrostatic interactions in the construction of stable supramolecular assemblies. The incorporation of amide functional groups within the N-annulated PBI in 2 stimulates pathway differentiation to achieve up to three J-type aggregates and a fourth H-type aggregate depending on the experimental conditions. The results presented demonstrate unprecedented levels of control over synthetic supramolecular self-assembly and the rich differentiation that N-annulated PBIs exhibit, opening the door to new, complex, functional supramolecular materials.  相似文献   

4.
The unique self‐assembling features of N‐annulated perylene bisimides (PBIs) 1 and 2 are reported. The stability of the aggregates of diester 1 , in which no H‐bonding interactions are operative, corroborates the significance of long‐range van der Waals and dipole–dipole electrostatic interactions in the construction of stable supramolecular assemblies. The incorporation of amide functional groups within the N‐annulated PBI in 2 stimulates pathway differentiation to achieve up to three J‐type aggregates and a fourth H‐type aggregate depending on the experimental conditions. The results presented demonstrate unprecedented levels of control over synthetic supramolecular self‐assembly and the rich differentiation that N‐annulated PBIs exhibit, opening the door to new, complex, functional supramolecular materials.  相似文献   

5.
A novel hydrogen-bonded supramolecular system of a [60]fullerene derivative with perylene bisimide was synthesized and characterized. 1H NMR spectra confirmed the existence of strong hydrogen-bonding interaction between compounds 1 and 5. Transmission electron microscopy images of 1.5 aggregates showed spherical particles having a mean diameter of 50 nm. The photocurrent response of the film was measured, and a steady and rapid anodic photocurrent response was obtained.  相似文献   

6.
The self‐assembly of a new perylene bisimide (PBI) organogelator with 1,7‐dimethoxy substituents in the bay position affords non‐fluorescent H‐aggregates at high cooling rates and fluorescent J‐aggregates at low cooling rates. Under properly adjusted conditions, the kinetically trapped “off‐pathway” H‐aggregates are transformed into the thermodynamically favored J‐aggregates, a process that can be accelerated by the addition of J‐aggregate seeds. Spectroscopic studies revealed a subtle interplay of π–π interactions and intra‐ and intermolecular hydrogen bonding for monomeric, H‐, and J‐aggregated PBIs. Multiple polymerization cycles initiated from the seed termini demonstrate the living character of this chain‐growth supramolecular polymerization process.  相似文献   

7.
In this work, two perylene derivatives containing different peripheral alkyl chains (i.e., N,N'-bis-(hexyl)perylene-3,4,9,10-tetracarboxyldiimide (ES-PTCDI) and N,N'-bis-(2'-ethylhexyl)perylene-3,4,9,10-tetracarboxyldiimide (EE-PTCDI)) were synthesized and efficiently dispersed at low loadings (from 0.01 to 0.1 wt %) into linear low-density polyethylene (LLDPE) by processing in the melt. Spectroscopic investigations (UV-vis and fluorescence) combined with quantum-mechanical studies demonstrated the ability of both chromophores to generate aggregates among the planar structure of dyes when dissolved in solution or dispersed into LLDPE above a certain concentration. The data acquired for dyes' dispersions into the polymer matrix reveal that the optical properties and responsiveness to mechanical stimuli are strongly dependent on the compactness of perylene aggregates provided by the different molecular structure of dyes. In particular, the strong intermolecular aggregates of ES-PTCDI resulted in being more resistant toward mechanical stress and less orientable by uniaxial drawing along the drawing direction of the film, whereas the less compact and distorted supramolecular architecture of EE-PTCDI chromophores provided composite films with a remarkable optical response to mechanical solicitations.  相似文献   

8.
We describe the synthesis, supramolecular ordering on surfaces and in solution, and photophysical characterization of OPV4UT-PERY, an oligo(p-phenylenevinylene) (OPV) with a covalently attached perylene bisimide moiety. In chloroform, the molecule forms dimers through quadruple hydrogen bonding of the ureido-s-triazine array. This is supported by scanning tunneling microscopy (STM) studies, which reveal dimer formation at the liquid (1,2,4-trichlorobenzene)/solid (graphite) interface. Moreover, contrast reversal in bias-dependent STM imaging provides information on the ordering and different electronic properties of the oligo(p-phenylenevinylene) and perylene bisimide moieties. In dodecane, the molecule self-assembles into H-type aggregates that are still soluble as a result of the hydrophobic shell formed by the dodecyloxy wedges. The donor-acceptor molecule is characterized by efficient energy transfer from the photoexcited OPV to the perylene bisimide. Mixed assemblies with analogous OPVs lacking the perylene bisimide unit have been prepared in dodecane solution and energy transfer to the incorporated perylene bisimides has been studied by fluorescence spectroscopy.  相似文献   

9.
A series of three perylene tetracarboxylic acid bisimide dyes 3a-c bearing phenoxy substituents at the four bay positions of the perylene core were synthesized and their complexation behavior to complementary ditopic dialkyl melamines 8a-c was investigated. Binding constants and Gibbs binding energies for the hydrogen bonds between the imide and the complementary melamine moiety have been determined in several solvents by NMR and UV/Vis titration experiments with monotopic model compounds 5 and 9. The effects of the solvent polarity and specific solvent-solute interactions on the degree of polymerization of (3 x 8)n are discussed, and a general formula to estimate the chain length of [AA-BB]n nylon-type supramolecular polymers is derived. In addition to the formation of a hydrogen-bonded supramolecular chain. pi-pi interactions were observed for perylene bisimide-melamine assemblies 3b x 8b and 3b x 8c in aliphatic solvents. The orthogonal nature of hydrogen bonding and pi-pi interactions leads to three-dimensional growth yielding large-sized aggregates already in dilute solution. On suitable substrates, densely intertwined networks of nano- to mesoscopic strands are formed which have been investigated by electron microscopy, confocal fluorescence microscopy and optical polarization microscopy. The high fluorescence and excellent photostability of these superstructures is promising for future studies on energy migration and artificial light harvesting at the nano- and mesoscopic length scale.  相似文献   

10.
The supramolecular aggregation of three diimidazolium‐functionalized perylene bisimides, differing in the alkyl chain length was investigated. These salts form aggregates in solvents like chloroform, dichloromethane, and glycerol. Solvent‐, concentration‐, and temperature‐dependent spectroscopic studies were carried out, evidencing the occurrence of an isodesmic, enthalpy‐driven aggregation process, underpinned by π–π stacking and hydrogen bonding. Moreover, dynamic light scattering (DLS) measurements and SEM images revealed that these salts aggregate in chloroform into elongated structures.  相似文献   

11.
Comparative studies on hydrogen-bonded versus covalently linked donor-acceptor-donor dye arrays obtained from oligo(p-phenylene vinylene)s (OPVs) as donor and bay-substituted perylene bisimides (PERYs) as acceptor dyes are presented. Both systems form well-ordered J-type aggregates in methylcyclohexane, but only hydrogen-bonded arrays afford hierarchically assembled chiral OPV-PERY dye superstructures consisting of left-handed helical pi-pi co-aggregates (CD spectroscopy) of the two dyes that further assemble into right-handed nanometer-scale supercoils in the solid state (AFM study). In the case of hydrogen-bonded arrays, the stability of the aggregates in solution increases with increasing conjugation length of the OPV unit. The well-defined co-aggregated dyes presented here exhibit photoinduced electron transfer on subpicosecond time scale, and thus, these supramolecular entities might serve as valuable nanoscopic functional units.  相似文献   

12.
The self-assembly of a bowl-shaped naphthalimide-annulated corannulene of high solubility has been studied in a variety of solvents by NMR and UV/Vis spectroscopy. Evaluation by the anti-cooperative K2-K model revealed the formation of supramolecular dimers of outstanding thermodynamic stability. Further structural proof for the almost exclusive formation of dimers over extended aggregates is demonstrated by atomic force microscopy (AFM) and diffusion ordered spectroscopy (DOSY) measurements as well as by theoretical calculations. Thus, herein we present the first report of a supramolecular dimer of an annulated corannulene derivative in solution and discuss its extraordinarily high thermodynamic stability with association constants up to >106 M−1 in methylcyclohexane, which is comparable to the association constants given for planar phthalocyanine and perylene bisimide dyes.  相似文献   

13.
Dye aggregates are becoming increasingly attractive for diverse applications, in particular as organic electronic and sensor materials. However, the growth processes of such aggregates from molecular to small assemblies up to nanostructures is still not properly understood, limiting the design of materials’ functional properties. Here we elucidate the supramolecular growth process for an outstanding class of functional dyes, perylene bisimides (PBIs), by transmission electron microscopy (TEM), cryogenic scanning electron microscopy (cryo‐SEM), and atomic force microscopy (AFM). Our studies reveal a sequential growth of amphiphilic PBI dyes from nanorods into nanoribbons in water by fusion and fission processes. More intriguingly, the fluorescence observed for higher hierarchical order nanoribbons was enhanced relative to that of nanorods. Our results provide insight into the relationship between molecular, morphological, and functional properties of self‐assembled organic materials.  相似文献   

14.
A supramolecular system of a perylene derivative containing bis(2,6-diacylaminopyridine) units and a perylene bisimide bound through three hydrogen-bonds was synthesized and characterized. 1H NMR spectra confirmed the existence of hydrogen-bonding interactions between the perylene derivative (3) and the perylene bisimide (7). The photocurrent generation of the self-assembled 3.7 film was measured, and a cathodic photocurrent response was obtained. SEM images indicated that well-defined long fibers could be fabricated by self-assembly, by exploiting the hydrogen bonding interactions and pi-pi stacking interactions of perylene rings.  相似文献   

15.
A melamine derivative has been covalently equipped with two oligo(para-phenylenevinylene) (OPV) chromophores. This procedure yields a bifunctional molecule with two hydrogen-bonding arrays available for complementary binding to perylene bisimide derivatives. Depending on the solvent, hydrogen-bonded trimers, tetramers, and dimers on a graphite surface are observed for pure OPV-melamine by using scanning tunneling microscopy (STM). Upon the addition of perylene bisimide, linear tapes of perylene bisimide, 12-membered rosettes that consist of alternating hydrogen-bonded OPV-melamine and perylene bisimide moieties are visualized. These results provide direct evidence for the possible modes of hydrogen bonding within a supramolecular co-assembly in solution. Subsequently, the optical properties of pure OPV-melamine and co-assemblies with a perylene bisimide derivative were characterized in solution. In an apolar solvent, OPV-melamine self-assembles into chiral superstructures. Disassembly into molecularly dissolved species is reversibly controlled by concentration and temperature. Complementary hydrogen bonding to a perylene bisimide derivative in an apolar solvent yields multicomponent, pi-stacked dye assemblies of enhanced stability that are characterized by fluorescence quenching of the constituent chromophores. Titration experiments reveal that a mixture of hydrogen-bonded oligomers is present in solution, rather than a single discrete assembly. The solution experiments are consistent with the STM results, which revealed various supramolecular assemblies. Our system is likely not to be optimally programmed to obtain a discrete co-assembled structure in quantitative yield.  相似文献   

16.
Like other discotic molecules, self-assembled supramolecular structures of perylene bisimides (PBIs) are commonly limited to columnar or lamellar structures due to their distinct π-conjugated scaffolds and unique rectangular shape of perylene cores. The discovery of PBIs with supramolecular structures beyond layers and columns may expand the scope of PBI-based materials. A series of unconventional spherical packing phases in PBIs, including A15 phase, σ phase, dodecagonal quasicrystalline (DQC) phase, and body-centered cubic (BCC) phase, is reported. A strategy involving functionalization of perylene core with several polyhedral oligomeric silsesquioxane (POSS) cages achieved spherical assemblies of PBIs, instead of columnar assemblies, due to the significantly increased steric hindrance at the periphery. This strategy may also be employed for the discovery of unconventional spherical assemblies in other related discotic molecules by the introduction of similar bulky functional groups at their periphery. An unusual inverse phase transition sequence from a BCC phase to a σ phase was observed by increasing annealing temperature.  相似文献   

17.
The synthesis of 1,10‐dihydroxyperylene bisimides by nucleophilic substitution of brominated perylene bisimide is described. 1,10‐Dihydroxyperylene bisimides formed J aggregates in nonpolar solvents and showed a clearly redshifted absorption band. The solvent polarity also influenced the hydrogen bond with the hydroxyl group, and thus, the photophysical properties of perylene bisimide. The photophysical properties of these dihydroxyperylene perylene bisimides can also be tuned by changing charge transfer from the hydroxyl groups to the perylene core through the introduction of metal ions.  相似文献   

18.
A supramolecular self-assembly has been constructed by perylene-bridged bis(β-cyclodextrin)s with water-soluble porphyrin through hydrophobic interactions, showing strong excitonic coupling interactions between perylene backbones and included porphyrins.  相似文献   

19.
Aggregates of functionalized polycyclic aromatic molecules like perylene derivatives differ in important optoelectronic properties such as absorption and emission spectra or exciton diffusion lengths. Although those differences are well known, it is not fully understood if they are caused by variations in the geometrical orientation of the molecules within the aggregates, variations in the electronic structures of the dye aggregates or interplay of both. As this knowledge is of interest for the development of materials with optimized functionalities, we investigate this question by comparing the electronic structures of dimer systems of representative perylene‐based chromophores. The study comprises dimers of perylene, 3,4,9,10‐perylene tetracarboxylic acid bisimide (PBI), 3,4,9,10‐perylene tetracarboxylic acid dianhydride (PTCDA), and diindeno perylene (DIP). Potential energy curves (PECs) and characters of those electronic states are investigated which determine the optoelectronic properties. The computations use the spin‐component‐scaled approximate coupled‐cluster second‐order method (SCS‐CC2), which describes electronic states of predominately neutral excited (NE) and charge transfer (CT) character equally well. Our results show that the characters of the excited states change significantly with the intermolecular orientation and often represent significant mixtures of NE and CT characters. However, PECs and electronic structures of the investigated perylene derivatives are almost independent of the substitution patterns of the perylene core indicating that the observed differences in the optoelectronic properties mainly result from the geometrical structure of the dye aggregate. It also hints at the fact that optical properties can be computed from less‐substituted model compounds if a proper aggregate geometry is chosen. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
以苝酰亚胺为构筑单元的氢键型超分子聚合物具有动态可逆的特征和独特的聚集体结构,呈现出许多新颖的光电功能特性,在有机太阳能电池,场效应晶体管和光收集材料等高新技术领域有着广阔的应用前景。本文在介绍苝酰亚胺衍生物的化学结构及其氢键组装特点的基础上,主要综述了近年来以苝酰亚胺为构筑单元,采用三重氢键,多重氢键以及其他形式氢键引导构筑的超分子聚合物的研究动态,这类超分子聚合物展示了丰富的组装体形貌结构,独特的性质功能以及在光电功能器件上的广阔的应用前景。最后,对其发展前景作了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号