首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A rapid procedure based on a direct extraction and HPLC determination with fluorescence detection of phenylephrine in pharmaceutical sachets that include a large excess of paracetamol (65 + 1, w/w), ascorbic acid (5 + 1, w/w), and other excipients (aspartame and sucrose) was developed and validated. The final optimized chromatographic method for ion-pair chromatography used an XTerra RP18 column, 3 microm particle size, 50 x 3.0 mm id. The mobile phase consisted of a mixture of acetonitrile and buffer (10 mM sodium octane-1-sulfonate, adjusted with H3PO4 to pH 2.2; 200 + 800, v/v), with a constant flow rate of 0.3 mL/min. The separation was carried out at 30 degrees C, and the injection volume was 3 microL. Fluorescence detection was performed at excitation and emission wavelengths of 275 and 310 nm, respectively. The mobile phase parameters, such as the organic solvent fraction (acetonitrile) in mobile phase as an organic modifier, the concentration of sodium octane-1-sulfonate as a counter-ion, temperature, and pH of mobile phase, were studied. As an alternative to ion-pair chromatography, hydrophilic interaction liquid chromatography (HILIC) was investigated using a Luna HILIC column, 3 microm, 100 x 4.6 mm id. The mobile phase consisted of acetonitrile and buffer (5 mM potassium dihydrogen phosphate, adjusted with H3PO4 to pH 2.5; 750 + 250, v/v) at a flow rate of 0.8 mL/min. The separation was carried out at 25 degrees C, and the injection volume was 5 microL. The proposed method has an advantage of a very simple sample pretreatment, and is much faster than the currently utilized HPLC methods using gradient elution and UV detection. Commercial samples of sachets were successfully analyzed by the proposed HPLC method.  相似文献   

2.
A sensitive and specific assay for paclitaxel in plasma has been developed to overcome limitations in previously published assays, using liquid chromatography with tandem mass spectrometric detection. Plasma samples (100 microL) were subjected to liquid-liquid extraction with 1-chlorobutane/acetonitrile (4:1, v/v), with [(2)H(5)]paclitaxel employed as the internal standard. Chromatography was carried out with a Waters SymmetryShield C8 column (50 x 2.1 mm, 3.5 microm). The total run time, including equilibration, was 8 min, using a gradient of acetonitrile and 10 mM ammonium formate, pH 4.0. The assay is accurate and precise over the range of 2-2500 ng/mL and has been successfully applied to study the clinical pharmacokinetics of two formulations of paclitaxel, Genaxol and Genetaxyl, given orally and intravenously.  相似文献   

3.
A rapid and sensitive column-switching semi-micro HPLC method is described for the direct analysis of tofisopam in human serum. The sample (100 microL) was directly injected onto the precolumn (Capcell Pak MF Ph-1), where unretained proteins were eluted to waste. Tofisopam was then eluted into an enrichment column using 13% acetonitrile in 50 mM phosphate buffer (pH 7.0) containing 5 mM sodium octanesulfonate and subsequently into the analytical column using 43% acetonitrile in 0.1% phosphoric acid containing 5 mM sodium octanesulfonate. The detection limit (2 ng/mL), good precision (CV < or = 4.2%) and speed (total analysis time 24 min) of the present method were sufficient for drug monitoring. This method was successfully applied to a bioequivalence test of two commercial tofisopam tablets.  相似文献   

4.
A rapid and sensitive LC-MS assay was developed and validated for the simultaneous determination of d7-nefazodone (d7-NEF), nefazodone (NEF), d7-hydroxynefazodone (d7-OH-NEF), hydroxynefazodone (OH-NEF), m-chlorophenylpiperazine (mCPP), and triazole-dione (Dione) in human plasma using trazodone (TRZ) as the internal standard (IS). A 0.1 mL aliquot of the plasma sample was precipitated with 0.1 mL of acetonitrile and vortexed for 2 min. After centrifugation, 50 microL of supernatant was mixed with 100 microL of 10 mM ammonium formate (pH = 4.0), and a 50 microL aliquot was injected onto a BDS Hypersil C18 column at a flow rate of 0.3 mL/min. The mobile phase consisting of 10 mM ammonium formate (pH = 4) and acetonitrile, 55:45 v/v, was used in an isocratic system. The mass spectrometer was programmed to admit the protonated molecules at m/z 477.2 (d7-NEF), 493.3 (d7-OH-NEF), 197.0 (mCPP), 372.0 (IS), 470.4 (NEF), 458.0 (Dione) and 486.2 (OH-NEF). Standard curves were linear (r(2) >/= 0.994) over the concentration range of 4-1000 ng/mL for Dione and 2-500 ng/mL for all other analytes. The lowest standard concentrations were the lower limits of quantitation for each analyte. The mean predicted quality control concentrations for all analytes deviated by less than 14.3% from the corresponding nominal values; the intra-assay and inter-assay precisions of the assay for all analytes were within 10.5% relative standard deviation. All analytes including the internal standard were stable in the injection solvent at room temperature for at least 24 h. The extraction recovery of the various analytes ranged from 79.2 to 109.1%. The validated assay was applied to the analysis of clinical samples obtained from a human subject who simultaneously received d7-NEF and NEF orally.  相似文献   

5.
Quantitative high-performance liquid chromatographic (HPLC) and micellar electrokinetic chromatographic (MEKC) methods have been developed for the determination of four structurally related potential manufacturing impurities, including morphine, of the opiate derivative pholcodine. Pholcodine and the four impurities were separated by MEKC in less than 14 min using a 70 cm x 75 microm I.D. uncoated fused-silica capillary (25 kV at 30 degrees C) and a running buffer consisting of 10% acetonitrile (v/v) in 20 mM borate-phosphate buffer pH 8.0 containing 40 mM sodium dodecyl sulphate (SDS). The MEKC method was compared to a HPLC method using a 5 microm Luna phenyl-hexyl column (150 x 4.6 mm I.D.) eluted with a mobile phase consisting of a mixture of 10% (v/v) acetonitrile, 7% (v/v) tetrahydrofuran in 20 mM phosphate buffer pH 8.0. Both methods were fully validated and a comparison was made regarding selectivity, linearity, precision, robustness and limits of detection and quantitation. The presence of the impurities in different samples of pholcodine drug substance was investigated using both methods.  相似文献   

6.
An analytical method of CE-MS and CE with an online preconcentration technique induced by a dynamic pH junction, addition of organic solvent and large volume injection was developed for sensitive determination of peptides in biological samples. Leucine enkephalin, methionine enkephalin, dynorphin A, β-endorphin and angiotensin II were used as model peptides. The optimal online preconcentration conditions were obtained at a sample matrix consisting of 100?mM borate buffer (pH 10.0) with 50% v/v acetonitrile and a BGE containing 1?M formic acid at pH 2.0, along with a 25-cm injection length. Under the optimized conditions, a 4.0×10(3)-1.1×10(4)-fold increase in peak intensity was achieved without degrading the peak shape. This online preconcentration method was applied to analyze the intracellular angiotensin II within the peptides extracted from HL1 cells and approximately increase of 1×10(4)-fold sensitivity was achieved compared to normal condition. Thus, the developed method could be applied to the analysis of various peptides for peptidomics study in biological samples.  相似文献   

7.
A sensitive HPLC-electrochemical detection method was developed for the analysis of gliclazide (GL) in human plasma. After deproteination of 100 microL of plasma by acetonitrile, evaporation, and reconstitution, GL was separated on a C18 column (150 mm x 4.6 mm) by the mobile phase (70 mM disodium tetraborate, pH 7.5, containing 26.5% of acetonitrile). The regression equations were linear (r> 0.9990) over the range of 50 nM to 4.00 microM. The precision and accuracy of intra- and inter-day analysis were less than 5.3 and 0.93% for relative standard deviation and relative error, respectively. The limit of detection for plasma was 10 nM for GL (S/N = 3, 10 microL injection). This newly developed method was applied for monitoring blood levels with one healthy volunteer dosing with a GL tablet.  相似文献   

8.
Fu H  Jin W  Xiao H  Xie C  Guo B  Zou H 《Electrophoresis》2004,25(4-5):600-606
Hydrophilic interaction capillary electrochromatography (HI-CEC) for the determination of basic pharmaceuticals spiked in human serum is described. The organic modifier content, ionic strength, and pH value of the mobile phase as well as the applied voltage are optimized for separation and elution of these drug analytes. Excellent separation was achieved for drugs using a mobile phase composition of 80% v/v acetonitrile in 100 mM triethylamine phosphate (TEAP) buffer at pH 2.8 with column efficiencies for analytes more than 200,000 plates/m. The samples of human serum spiked with basic drugs were directly injected after a simple acetonitrile treatment. The linear range and reproducibility of these basic drugs using an external and internal standard method were compared. As a result, the reproducibility could be greatly improved by using the internal standard method. Good calibration curves with regression coefficients more than 0.998 in the range of 5-160 microg/mL were observed with the internal standard method. The limits of quantitation, based on standards with acceptable relative standard deviations (RSDs), were below 5 microg/mL. The intra- and inter-day precisions, determined as RSDs, were less than 4.57%.  相似文献   

9.
Cysteinesulfinate, hypotaurine and taurine, which are key metabolites of cysteine, can be separated from each other and other closely eluting amino acids in biological samples by reversed-phase high-performance liquid chromatography on a Waters Nova-Pak C18 column. Samples were derivatized with o-phthalaldehyde-2-mercaptoethanol prior to injection. The elution system consisted of 100 mM potassium phosphate buffer, pH 7.0, with 3% (v/v) tetrahydrofuran with an initial isocratic phase at 1.2% acetonitrile and a gradient from 1.2 to 12.8% acetonitrile. This method is suitable for measurement of the production of metabolites from cysteine by isolated cells and for analysis of plasma and tissue extracts. Low levels of hypotaurine in rat tissues were easily measured with this method and are reported here for the first time.  相似文献   

10.
High-performance liquid chromatographic methods for quantification of a novel carbapenem anti-infective agent, I, in plasma and urine have been developed, validated, and applied to clinical samples. The carbapenem is stabilized in the matrix by the addition of a non-nucleophilic buffer, rapid freezing, and storage at -70 degrees C. After addition of another carbapenem, II, as internal standard, plasma proteins are precipitated with acetonitrile, which is subsequently extracted from the sample with methylene chloride. A portion of the aqueous phase is injected onto a reversed-phase phenyl column that is eluted with 4% (v/v) acetonitrile in 15 mM ammonium phosphate (pH 7.4). The urine assay entails addition of the internal standard II to buffered urine, which is subsequently extracted with methylene chloride prior to injection of the aqueous phase onto a cation-exchange column. The urine assay mobile phase is 5% v/v tetrahydrofuran in 100 mM sodium acetate (pH 5.4). The detector response at 313 nm is a linear (r greater than 0.99) function of concentration over the ranges 0.50-100 micrograms/ml and 2.0-200 micrograms/ml for the plasma and urine assays, respectively. Thermal degradation products do not interfere with either assay. These assays have proven to be accurate, precise, reproducible, and rugged during clinical sample analyses.  相似文献   

11.
A simple and highly sensitive method has been developed for determining ortho-phenylphenol (OPP) in lemon rind by high-performance liquid chromatography with electrochemical detection using a microbore column (microHPLC-ECD). Based on the voltammetric behavior of OPP, microHPLC-ECD was established using a CAPCELL PAK C-18 UG 120 microbore ODS column, 17 mM acetic acid-sodium acetate buffer (pH 4.0)/acetonitrile (60/40, v/v) as a mobile phase and an applied potential at +0.9 V vs. Ag/AgCl. The current peak height was found to be linearly related to the amount of OPP injected from 3.4 pg to 1.7 ng (r > 0.999). The detection limit (S/N = 3) was 3.4 pg (20 fmol), which was 100 times greater in terms of sensitivity when compared to conventional HPLC with UV detection. Standard OPP at 0.425 ng was detected with a relative standard deviation (RSD) of 1.9% (n = 10). The OPP contents in several lemon samples were determined by the present method. The recoveries of OPP from lemon rind exceeded 98% with an RSD (n = 5) of less than 3.01%.  相似文献   

12.
A rapid, accurate and sensitive method has been developed for the quantitative determination of four fluoroquinolone antimicrobial agents, enoxacin, norfloxacin, ofloxacin and ciprofloxacin, with high in-vitro activity against a wide range of Gram-negative and Gram-positive organisms.A Kromasil 100 C(8) 250 mm x 4 mm, 5 microm analytical column was used with an eluting system consisting of a mixture of CH(3)CN-CH(3)OH-citric acid 0.4 mol L(-1) (7:15:78 %, v/v). Detection was performed with a variable wavelength UV-visible detector at 275 nm resulting in limits of detection: 0.02 ng per 20 microL injection for enoxacin and 0.01 ng for ofloxacin, norfloxacin and ciprofloxacin. Hydrochlorothiazide (HCT) was used as internal standard at a concentration of 2 ng microL(-1). A rectilinear relationship was observed up to 2 ng microL(-1) for enoxacin, 12 ng microL(-1) for ofloxacin, 3 ng microL(-1) for norfloxacin, and 5 ng microL(-1) for ciprofloxacin. Separation was achieved within 10 min. The statistical evaluation of the method was examined by performing intra-day (n=8) and inter-day precision assays (n=8) and was found to be satisfactory with high accuracy and precision. The method was applied to the direct determination of the four fluoroquinolones in human blood serum. Sample pretreatment involved only protein precipitation with acetonitrile. Recovery of analytes in spiked samples was 97+/-6% over the range 0.1-0.5 ng microL(-1).  相似文献   

13.
Capillary electrophoresis with diode array detection (DAD) was used to determine uric acid (UA) in chicken plasma and the allantoic fluid of chicken embryos. Complete separation of uric and ascorbic acids was attained in less than 10 min in the optimized BGE containing 60 mM MES + 30 mM Tris + 0.001% (w/v) polybrene (pH 6.1). The limit of UA detection (0.2 mg/L) was found to be low enough for sensitive analysis of native plasma and allantoic fluid samples. Range of linearity (1-200 mg/L), repeatability for peak area (CV <4.1%) and migration time (CV < 2.5%), as well as recovery of UA from biological samples (97-100%), were found to be satisfactory. The method was applied to detect the elevated UA concentrations (hyperuricemia) in chicken embryos with induced unilateral renal agenesis. CE/DAD analysis of the chicken plasma can be carried out with a relatively small volume of samples (1 microL).  相似文献   

14.
An instrumental set up including on-line solid-phase extraction, nano-liquid chromatography, and nanospray mass spectrometry is constructed to improve the sensitivity for quantitation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in surface water. Sample volumes of 1000 microL are loaded onto a microbore 1.0-mm i.d. x 5 mm, 5 microm Kromasil C(18) enrichment column by a carrier solution consisting of 10mM ammonium acetate in acetonitrile-water (10:90, v/v) at a flow rate of 250 microL/min, providing on-line analyte enrichment and sample clean-up. Backflushed elution onto a 0.1-mm i.d. x 150 mm, 3.5 microm Kromasil C(18) analytical column is conducted using an acetonitrile-10mM ammonium acetate solvent gradient from 30% to 70% acetonitrile. Water samples are added with internal standard (perfluoroheptanoic acid) and filtrated prior to injection. The mass limits of detection of PFOA and PFOS are 0.5 and 1 pg, respectively, corresponding to concentration limits of detection of 500 pg/L and 1 ng/L, respectively. The total time spent on sample preparation, chromatography, and detection is approximately 12 min per sample. The method was employed for the determination of PFOS and PFOA in urban river water.  相似文献   

15.
A simple, reliable and highly sensitive procedure was devised for measuring the levels of Amicar in blood and urine. 100 microL of serum or urine sample was added to 10 microL of a 10% w/v zinc sulfate solution and 100 microL of methanol, as previously described (Lam et al., 1980) for the removal of proteins by precipitation. 50 microL of the supernatant was then mixed with 300 microL of 1 M borate buffer containing D-valine as the internal standard before derivatization with o-phthalaldehyde. The amino acids were then separated by a stereoselective reversed-phase system using a mobile phase containing 10% of acetonitrile in 2.5 mM Cu(II) complexes of L-proline. The chromatography is highly selective, resolving Amicar from L-valine which in turn is resolved from its unnatural D-antipode, the internal standard. The procedure including sample preparation and separation required a total of 15 min. As little as 50 ng/mL of Amicar in body fluids could be detected as the o-phthalaldehyde derivative by fluorescence.  相似文献   

16.
The development and validation of a simple, rapid and selective high-performance liquid chromatography (HPLC) method is described for the quantitation of itraconazole and hydroxy-itraconazole in 100 microL of plasma from a paediatric population. The mobile phase of methanol (75% v/v) and water (25% v/v) was pumped at 1 mL/min through a C18 Symmetry (3.9 mm i.d. x 150 mm) cartridge. Using a protein-precipitation method, 100 microL internal standard (IS) solution (R051012, 555 microg/L in acetonitrile) were added to 100 microL of plasma followed by 10 microL zinc sulphate solution (20% w/v). Itraconazole, hydroxy-itraconazole and IS eluted at 4.7, 8.3 and 12.5 min, respectively and were detected fluorometrically at 250 nm (excitation) and 380 nm (emission). Recoveries were 87.1-96.7%. Calibrations in drug-free plasma were linear (r2 > 0.99) from 50 to 2000 microg/L, using 1/c2 (c = concentration) weighting. Intraday and interday imprecision (CV%) was 4.8-17.3 and 6.3-16.6% for itraconazole, and 4.6-17.9 and 7.02-18.4% for hydroxy-itraconazole. Inaccuracy was -7.1 to -14.7% for itraconazole and -0.1 to -9.7% for hydroxy-itraconazole. The clinical application of this method was demonstrated by measurement of itraconazole and hydroxy-itraconazole in plasma samples drawn from paediatric cystic fibrosis patients, who were prescribed itraconazole for treatment of allergic bronchopulmonary aspergillosis.  相似文献   

17.
A simple, rapid and sensitive analytical procedure for the measurement of imiquimod in skin samples after in vitro penetration studies has been developed and validated. In vitro penetration studies were carried out in Franz diffusion cells with porcine skin. Tape stripping technique was used to separate the stratum corneum (SC) from the viable epidermis and dermis. Imiquimod was extracted from skin samples using a 7:3 (v/v) methanol:acetate buffer (100 mM, pH 4.0) solution and ultrasonication. Imiquimod was analyzed by HPLC using C(8) column and UV detection at 242 nm. The mobile phase used was acetonitrile:acetate buffer (pH 4.0, 100 mM):diethylamine (30:69.85:0.15, v/v) with flow rate 1 mL/min. Imiquimod eluted at 4.1 min and the running time was limited to 6.0 min. The procedure was linear across the following concentration ranges: 100-2500 ng/mL for both SC and tape-stripped skin and 20-800 ng/mL for receptor solution. Intra-day and inter-day accuracy and precision values were lower than 20% at the limit of quantitation. The recovery values ranged from 80 to 100%. The method is adequate to assay imiquimod from skin samples, enabling the determination of the cutaneous penetration profile of imiquimod by in vitro studies.  相似文献   

18.
Johnson RL  Aldstad JH 《The Analyst》2002,127(10):1305-1311
We describe an improved method for the determination of inorganic arsenic in drinking water. The method is based on comprehensive optimization of the anion-exchange ion chromatographic (IC) separation of arsenite and arsenate with post-column generation and detection of the arsenate-molybdate heteropoly acid (AMHPA) complex ion. The arsenite capacity factor was improved from 0.081 to 0.13 by using a mobile phase (2.0 mL min(-1)) composed of 2.5 mM Na2CO3 and 0.91 mM NaHCO3 (pH 10.5). A post-column photo-oxidation reactor (2.5 m x 0.7 mm) was optimized (0.37 microM potassium persulfate at 0.50 mL min(-1)) such that arsenite was converted to arsenate with 99.8 +/- 4.2% efficiency. Multi-variate optimization of the complexation reaction conditions yielded the following levels: 1.3 mM ammonium molybdate, 7.7 mM ascorbic acid, 0.48 M nitric acid, 0.17 mM potassium antimony tartrate, and 1.0% (v/v) glycerol. A long-path length flow cell (Teflon AF, 100-cm) was used to measure the absorption of the AMHPA complex (818 +/- 2 nm). Figures of merit for arsenite/arsenate include: limit of detection (1.6/0.40 microg L(-1)): standard error in absorbance (5.1 x 10(-3)/3.5 x 10(-3)); and sensitivity (2.9 x 10(-3)/2.2 x 10(-3) absorbance units per ppb). Successful application of the method to fortified surface and ground waters (100 microL samples) is also described.  相似文献   

19.
We report a rapid and reliable HPLC-UV method for determination of raloxifene, a kind of selective estrogen receptor modulator (SERM), in rat tissue. Proteins were precipitated by adding 200 microL of acetonitrile and 50 microL of methanol to 100 microL of the tissue homogenates, following vortex mixing and centrifugation. Separation was carried out on a reversed-phase C(18) column (150 x 4.6 mm, 5 microm) with a mobile phase of acetonitrile:0.05 m ammonium acetate (pH 4.0 +/- 0.1; 33:67, v/v) at a flow rate of 1.0 mL/min. The UV detection wavelength was set at 289 nm and the temperature of column was kept at 23 degrees C, without interference from endogenous tissue compounds. The calibration curve was linear from 0.0125 to 10.0 microg/mL with correlation coefficient of over 0.994, while the limit of quantification was 0.008 microg/mL. The intra- and inter-day coefficients of variation were less than 10% (RSD). The recovery of assay was between 95.8 and 104.5%. Furthermore, the method was used to measure the concentration of raloxifene in rat tissue after a simple oral dose. The highest level was observed in liver, lung, spleen, then heart and kidney. The lowest level was found in brain. These results suggest that raloxifene distributes rapidly and moderately into tissues such as liver, lung and spleen.  相似文献   

20.
Rapid, selective, and sensitive methodology for the quantification of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in human plasma using packed capillary liquid chromatography coupled to electrospray ionization ion-trap mass spectrometry has been developed. Plasma proteins were precipitated using acetonitrile and the resulting supernatant was diluted 1+1 with water containing 10 mM ammonium acetate (NH4Ac) prior to injection. Sample volumes of 250 microL were loaded onto a 30 mm x 0.32 mm ID 10 microm Kromasil C18 precolumn by a carrier solution consisting of 10 mM NH4Ac in ACN/H2O (5/95, v/v) at a flow rate of 100 microL/min, providing on-line analyte enrichment and sample clean-up. Backflushed elution onto a 100 mm x 0.32 mm ID 3.5 microm Kromasil C18 analytical column was conducted using an ACN/H2O solvent gradient containing 10 mM NH4Ac. In order to improve the robustness and performance of the method, perfluoroheptanoic acid (PFHA) was used as internal standard. Separation and detection of PFOA, PFHA, and PFOS were achieved within 10 minutes. Ionization was performed in the negative mode in the m/z range 250-550. The method was validated over the concentration range 1-200 ng/mL for PFOA and over the range 5-200 ng/mL untreated plasma for PFOS, yielding correlation coefficients of 0.997 (PFOA) and 0.996 (PFOS), respectively. The within-assay (n = 6) and between-assay (n = 6) precisions were in the range 2.1-9.2 and 5.6-12%, respectively. The concentration limits of detection (cLOD) of PFOA was 0.5 ng/mL while the cLOD of PFOS was estimated to be 0.2 ng/mL in untreated plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号