首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
锂硫电池具有高能量密度、低成本和环境友好等优势,有望满足市场日益增长的需求。然而,其正极材料中的活性物质硫存在溶解穿梭等问题,限制了锂硫电池的大规模应用。本文利用氧化石墨(GO)作为碳源、升华硫作为硫源,通过微波诱导等离子体技术(MIP)快速高效(30-40 s)地制备得到了还原氧化石墨烯负载硫纳米颗粒锂硫电池复合正极材料(rGO@S),其中,rGO褶皱卷曲、相互连接的层片状结构,有利于电解液中的锂离子向电极材料中扩散和迁移,同时有利于提高电极材料的导电性,且rGO上的含氧官能团也能够起到对硫纳米颗粒的固定作用,有利于电极材料循环稳定性的提升。得益于其独特的形貌结构,rGO@S在电池测试中表现出优异的倍率性能和良好的循环稳定性。在0.1 A·g-1的电流密度下,rGO@S的可逆比容量为1036 mAh·g-1,当电流密度增大到8 A·g-1其可逆比容量仍高达832 mAh·g-1,且经过8 A·g-1的超大电流密度充放循环,当电流密度回到0.1 A·g-1...  相似文献   

2.
以具有高比表面积、分级孔结构和优良导电性的碳纳米笼(CNCs)为载体,制得了粒子尺寸为10~25 nm且高度分散的LiFePO4/CNCs复合物.以LiFePO4/CNCs复合物作为锂离子电池的正极材料,在0.1 C倍率下首次放电比容量达到163 mAh·g-1,15 C和30 C倍率下的放电比容量可达96和75 mAh·g-1;在15 C倍率下循环200圈后,其放电比容量仍保持在92 mAh·g-1,显著优于LiFePO4/CNTs复合物.这些结果表明,LiFePO4/CNCs复合物具有优异的倍率性能和循环稳定性,是一种性能优良的锂离子电池正极材料,其性能源自CNCs载体的高比表面积、分级孔结构和优异导电性以及LiFePO4颗粒的纳米化和高结晶度.  相似文献   

3.
以羟基纳米纤维素为原料,利用其表面丰富的羟基还原KMnO 4,在纳米纤维表面原位生成MnO2纳米颗粒,并与Super P混合,通过简单抽滤的方式获得CNF@MnO2/Super P自支撑正极。结果表明:无粘结剂的CNF@MnO2/Super P自支撑正极具有较高的循环稳定性,在0.5 A·g-1的电流密度下,循环800圈后,容量仍能达到247 mAh·g-1;均匀分布的纳米MnO2与Super P能够有效缩短离子和电子扩散路径,大大降低材料的电阻,使正极具有良好的倍率性能,在2 A·g-1的电流密度下,循环300圈之后,电池容量仍保持在175 mAh·g-1,库仑效率~99%;利用该正极良好的延展性,制备了软包电池,并表现出了较高的循环稳定性和容量保持率,该工作为柔性无粘结剂的水系Zn-MnO2二次电池的设计开发提供了新的研究思路。  相似文献   

4.
全固态薄膜锂离子电池具有易微型化与集成化等优点,因此,非常适合为微系统供电。负极对全固态薄膜锂离子电池的性能有重要影响。现有电池通常采用金属锂作为负极,然而其枝晶生长问题及低的热稳定性限制了相应电池在工业、军事等高温、高安全场合应用。为此,本文系统研究了LiNbO3薄膜的电化学性能,结果表明:LiNbO3薄膜呈现高比容量(410.2 mAh·g-1)、高倍率(30C时比容量80.9 mAh·g-1)和长循环性能(2000圈循环后的容量保持率为100%),以及高的室温离子电导率(4.5×10-8 S·cm-1)。在此基础上,基于LiNbO3薄膜构建出全固态薄膜锂离子电池Pt|NCM523|LiPON|LiNbO3|Pt,其展现出较高的面容量(16.3μAh·cm-2)、良好的倍率(30μA·cm-2下比容量1.9μAh·cm-2)及长循环稳定性(300圈循环后的容量保持率...  相似文献   

5.
尖晶石锰酸锂(LiMn2O4)作为一种不含贵金属和有毒元素的低成本、绿色环保的锂离子电池正极材料,具有广袤的应用与研究前景。本项工作中,利用氩气为惰性气氛,采用高温固相合成法,制备出了粒径均匀、性能优异的LiMn2O4正极材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)对材料进行了结构表征与分析,进行了充放电循环、循环伏安(CV)和电化学阻抗(EIS)等电化学性能测试,并对煅烧氛围和煅烧温度进行了探讨分析。结果表明,在1 C倍率下,首圈放电比容量为114.2 mAh·g-1,100次充放电循环后放电比容量还有98.4 mAh·g-1,容量保持率为86.2%。实验证明,惰性气氛对提升LiMn2O4电化学储锂性能行之有效。  相似文献   

6.
采用静电纺丝技术制备出CaSnO3纳米纤维(CaSnO3 NFs)并作为模板,再经表面原位聚合酚醛树脂和碳化处理制得碳包覆CaSnO3纳米纤维(CaSnO3@C NFs)。使用X射线衍射、扫描电子显微镜、透射电子显微镜和X射线光电子能谱对材料的物相组成、形貌和微观结构进行了表征,通过循环伏安、恒电流充放电和交流阻抗谱研究了碳包覆及碳化温度对CaSnO3 NFs负极材料电化学性能的影响。结果显示,碳包覆改性使CaSnO3 NFs的电化学性能得到较大程度的提高,而且随着碳化温度的升高,CaSnO3@C NFs复合电极的比容量先增加后下降,600℃碳化获得的CaSnO3@C NFs?600复合材料具有最好的电化学性能。在0.1 A·g-1的电流密度下,CaSnO3@C NFs?600电极的首圈放电比容量达到1102.2 mAh·g-1,充放电循环100圈后比容量为548.8 mAh·g-1,当电流密度提高到2 A·g-1时,其比容量仍保持在333.5 mAh·g-1。  相似文献   

7.
锂-硫(Li-S)电池具有较高的理论比容量(约1 675 mAh·g-1)和能量密度(约2 600 Wh·g-1),被认为是继锂离子电池之后最有前途的下一代高能量密度电池.Li-S电池在实现产业化之前需要克服硫正极诸多技术瓶颈,主要有硫的导电性差、多硫化物的穿梭效应与硫电极体积膨胀等.本文着重梳理了氧化还原媒介体分子在硫正极改性研究上的进展,并对硫正极的未来发展趋势进行了展望.  相似文献   

8.
随着新能源如电动汽车、储能电站的蓬勃发展,人们对下一代高性能锂离子电池的能量密度、功率密度和循环寿命提出了更高的要求. 而富锂锰基正极材料xLi2MnO3·(1-x)LiMO2(0 < x < 1,M = Mn、Co、Ni…)具有可逆比容量高(240 ~ 280 mAh·g-1,2.0 ~ 4.8 V)、电化学性能较佳、成本较低等优点,已吸引了研究者的关注,有望成为下一代锂离子电池用正极材料. 本实验室采用固相法和溶胶-凝胶法制备不同的富锂锰基正极材料,其中,溶胶-凝胶法制得的Li[Li0.2Mn0.54Ni0.13Co0.13]O2电极首周期放电比容量277.3 mAh·g-1,50周期循环后容量272.8 mAh·g-1,容量保持率98.4%. 本文重点结合本实验室的研究工作,对新型富锂锰基正极材料xLi2MnO3·(1-x)LiMO2的结构、合成、电化学性能改性和充放电机理等进行总结与评述.  相似文献   

9.
Bi2Te3钾离子电池负极存在结构不稳定性和电化学反应动力学缓慢问题。本研究在手风琴状MXene基底上生长棒状Bi2Te3,随后利用P掺杂制备了高性能P-Bi2Te3/MXene超结构。这种新型负极具有丰富的Te空位和良好的自适应特性,展现出优异的循环稳定性(在0.2 A·g-1电流密度下200次循环后可逆容量为323.1 mAh·g-1)和出色的倍率能力(20 A·g-1时可逆容量为67.1 mAh·g-1)。动力学分析和非原位表征表明,该超结构具有优异的赝电容特性、出色的K+离子扩散能力以及可逆的嵌入反应和转化反应机理。  相似文献   

10.
采用溶胶-凝胶法合成Al掺杂富锂锰基Li1.2Mn0.54-xAlxNi0.13Co0.13O2x=0、0.03)锂离子电池正极材料,之后采用一步液相法制备Li2WO4包覆层,系统地研究了Al掺杂和Li2WO4包覆双效改性对富锂锰基正极材料电化学性能的影响.结果表明,Al掺杂后明显提升富锂锰基正极材料的循环稳定性,包覆层Li2WO4明显改善其倍率性能和放电平台电压衰减问题.Li2WO4包覆量为5% Li1.2Mn0.51Al0.03Ni0.13Co0.13O2正极材料在2.0~4.8 V充放电电压区间及1000 mA·g-1电流密度下比容量仍高达110 mAh·g-1左右,同时在100 mA·g-1的电流密度下循环300次容量保持率为78%,而且循环过程中放电平台电压衰减也明显减缓.该工作为解决锂离子电池富锂锰基正极材料循环稳定性和平台电压衰减提供了新的思路.  相似文献   

11.
制备了一种空心碳球负载二硫化硒(SeS2@HCS)复合材料作为锂离子电池正极材料。通过扫描电子显微镜(SEM),X射线衍射(XRD)以及氮气吸脱附测试(BET)等对产物形貌、组成和结构进行了表征。实验结果显示,采用模板法结合化学聚合法可以合成形貌均一、单分散的空心碳球;其直径约为500 nm,壁厚约为30 nm。进一步采用熔融灌入法可以得到空心碳球负载二硫化硒复合材料。将所制备复合材料组装成电池进行电化学性能测试,与原始二硫化硒块体材料相比,SeS2@HCS复合材料具有更高的初始容量(100 mA·g-1电流密度下,初始放电容量为956 mAh·g-1)和更长的循环寿命(100 mA·g-1电流密度下,循环200圈),同时显示出更优异的倍率性能。研究结果表明该复合材料是一种具有应用前景的新型锂离子电池正极材料。  相似文献   

12.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

13.
富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2因具有超过250 mA·h·g-1的可逆比容量和高工作电压(>3.5 V. Li/Li+)以及经济成本低的特点,在便携式电子设备中发挥着重要的作用,也被认为是下一代混合动力汽车(HEV)和电动汽车(EV)的理想动力源,是一种有前途的正极材料。由于富锂锰基正极材料存在低倍率容量、电压衰减严重、初始容量损失大的问题,因此提高电池的容量和寿命是目前研究的重点。为此综述了锂离子电池富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2的储锂机理、制备方法以及改性研究。  相似文献   

14.
二氧化钛(TiO2)作为有前景的钠离子电池负极材料, 具有良好的循环稳定性, 但由于其导电率较低, 而导致容量和倍率性能不佳限制了其实际应用. 本文采用喷雾干燥技术制备了氧化石墨烯/纳米TiO2复合材料(GO/TiO2), 通过热处理获得还原氧化石墨烯/TiO2复合材料(RGO/TiO2). 电化学测试结果表明, 还原氧化石墨烯改性的RGO/TiO2复合材料的电化学性能得到显著提升, RGO含量为4.0%(w)的RGO/TiO2复合材料在各种电流密度下的可逆容量分别为183.7 mAh·g-1 (20 mA·g-1), 153.7 mAh·g-1 (100 mA·g-1)和114.4 mAh·g-1 (600mA·g-1), 而纯TiO2的比容量仅为93.6 mAh·g-1 (20 mA·g-1), 69.6 mAh·g-1 (100 mA·g-1)和26.5 mAh·g-1 (600mA·g-1). 4.0%(w) RGO/TiO2复合材料体现了良好的循环稳定性, 在100 mA·g-1电流密度下充放电循环350个周期后, 比容量仍然保持146.7 mAh·g-1. 同等条件下, 纯TiO2电极比容量只有68.8 mAh·g-1. RGO包覆改性极大提高了TiO2在钠离子电池中的电化学嵌钠/脱钠性能. RGO包覆改性技术在改进钠离子电池材料性能中将有很好的应用前景.  相似文献   

15.
以磷酸二氢钠(NaH2PO4)为磷源, 通过溶剂热法制备了P掺杂的TiO2/C (P-TiO2/C)纳米管以改善TiO2的储锂性能. 电化学测试表明: P-TiO2/C负极具有高的比容量(在0.1 A•g-1的电流密度下达到335 mAh•g-1)、优异的倍率性能(在2.0 A•g-1的电流密度下为92 mAh•g-1)及循环性能(在1.0 A•g-1的电流密度下经过1000次循环后放电比容量仍维持在135 mAh•g-1). 并且, P-TiO2/C在2 mV•s-1时的赝电容贡献约为96%. 由P-TiO2/C负极和活性炭正极组装的锂离子电容器在250 W•kg-1的功率密度下能量密度能够达到74.7 Wh•kg-1. 此外, 该锂离子电容器在10000次循环后比电容保持率约为43%. 此外, 该器件在1.0 A•g-1下循环10000次后充满电仍可点亮18只红色的LED灯组成的“LIC”字样. 该工作为高性能锂离子电容器TiO2负极材料的设计提供了思路.  相似文献   

16.
为了提高碳材料作为锂离子电池负极材料的比容量,将氮掺杂的碳纤维与高容量的Sn进行复合。通过静电纺丝及低温碳化制备了均匀镶嵌Sn纳米颗粒的氮掺杂碳纳米纤维(C-Sn)复合膜。该复合膜直接用作自支撑锂离子电池负极时表现出较好的电化学性能,Sn的引入显著提高了碳纳米纤维膜的电化学性能。碳均匀包覆Sn后形成的纤维结构可以促进离子电子的传导,并能有效缓冲Sn纳米粒子在循环过程中的体积变化,从而有效抑制粉化与团聚。Sn含量约为25.6%的CSn-2电极具有最高的比容量和更优异的倍率性能。电化学测试结果表明,在2A·g-1的电流密度下,充放电循环1000圈后充电(放电)比容量为412.7(413.5)mAh·g-1。密度泛函理论(DFT)计算结果表明,N掺杂非晶碳与锂具有良好的亲和性,有利于将合金化反应之后形成的SnxLiy合金锚定在碳表面,进而缓解了充放电过程中的Sn的体积变化。本文为高性能储锂材料的设计提供了一种切实可行的策略。  相似文献   

17.
锂硫电池由于具有较高的理论容量被视为一种最具发展潜力的储能装置. 然而,硫的利用率较低及循环寿命短等问题限制着其商业化进程. 本文通过一种简单易行的方法将三聚氰胺(C3H6N6)和L半胱氨酸(C3H7NO2S)碳化,制备出一种氮掺杂类石墨烯活性炭材料(NGC). 该材料的类石墨烯结构能够有效抑制锂硫电池在充放电过程中产生的体积效应,以此提升其循环性能. 不仅如此,材料中含有的含氮官能团还可以促进离子转移,抑制多硫化物的溶解,进而提升硫的利用率. 其中,制备出的NGC-8/PS复合电极用于锂硫电池时在0.2 C的电流密度下初始容量为1164.1 mAh·g-1,在经过400圈的充放电循环之后依然具有909.4 mAh·g-1的比容量,每圈容量衰减仅为0.05%,甚至在2C的电流密度下也能达到820 mAh·g-1的高比容量.  相似文献   

18.
锂离子电池用富锂层状正极材料   总被引:1,自引:0,他引:1  
吴承仁  赵长春  王兆翔  陈立泉 《化学进展》2011,23(10):2038-2044
正极材料与负极材料是锂离子电池重要组成部分。目前锂离子电池负极材料比容量通常在300mAh/g以上,而正极材料比容量始终徘徊在150mAh/g。正极材料正在成为锂离子电池性能进一步提升的瓶颈。富锂层状正极材料是一类新型正极材料,其可逆容量在200mAh/g以上,其高容量特性引起人们的广泛关注。这类材料可以用xLi2MO3·(1-x)LiM'O2 (M 为Mn, Ti, Zr之一或任意组合; M'为Mn, Ni, Co之一或任意组合; 0≤x≤1)形式表示。由于其组成与结构的特殊性,这类富锂层状正极材料的充放电机理也不同于其它含锂过渡金属氧化物正极材料。本文介绍富锂层状正极材料的合成、结构与充放电机理,重点介绍近年来通过改性提高其电化学性能方面的研究进展,指出目前富锂材料研究中存在的问题,探讨未来的研究重点。  相似文献   

19.
将氢氧化物共沉淀法制备的(Ni1/3Co1/3Mn1/3)(OH)2在500℃热处理5 h得到具有尖晶石结构、纳米尺寸的氧化物M3O4(M=Ni1/3Co1/3Mn1/3).将其与LiOH及不同量的纳米MgO混合均匀,并在850℃热处理24 h制备了Li(Ni1/3Co1/3Mn1/3)1/xMgxO2(x=0,0.01,0.02,0.03,0.04,0.05)正极村料.随着Mg掺杂量的增大,正极材料的晶胞参数增大;少量的Mg掺杂增大了锂离子的扩散系数,而过度掺杂却使锂离子扩散系数有所降低,其中Li(Ni1/3Co1/3Mn1/3)0.98Mg0.02O2的锂离子扩散系数最大,其脱出和嵌入扩散系数分别为DLi-dein=29.20×10-11cm2·S-1和DLi-in=4.760×10-11cm2·s-1;其以3C倍率充放电的平均放电比容量为139.3 mAh·g-1,比未掺杂的原粉约高9.5 mAh·g-1;另外其循环性能也得到了大幅度改善.  相似文献   

20.
王蕾  赵冬冬  刘旭  于鹏  付宏刚 《化学学报》2017,75(2):231-236
针对目前的锂离子电池负极材料存在比容量低、循环稳定性差等问题,本工作发展了简单、有效的方法合成氧化亚钴纳米粒子与石墨烯的复合材料(CoO/RGO).采用氧化石墨(GO)和Co(NO32作为原料,先用水热路线制备了前驱体,再将其在氮气气氛下热处理,最终得到CoO/RGO复合材料.存在于石墨烯表面的CoO纳米粒子可以有效地阻止石墨烯片层的聚集,同时石墨烯片层的相互连接能够形成三维的空间网络,提高复合材料的导电性.将合成的CoO/RGO复合材料作为负极,以锂片作为正极,组装成纽扣电池.电化学测试表明,在电流密度为100 mA·g-1的条件下,初始比容量放电比容量高达1312.6 mAh·g-1,在10000 mA·g-1的大电流密度下,经过300圈循环后,其比容量仍然可以达到557.4 mAh·g-1.这表明CoO/RGO复合材料具有高的比容量、优异的倍率性能及循环稳定性,这归因于3D网状结构能够避免在锂离子的嵌入/脱出过程中材料的结构被严重破坏.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号