首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
In this work, aligned and molecularly oriented bone‐like PLLA semihollow fiber yarns were manufactured continuously from an optimized homogeneous polymer‐solvent‐nonsolvent system [PLLA, CH2Cl2, and dimethyl formamide (DMF)] by a single capillary electrospinning via self‐bundling technique. Here, it should be emphasized that the self‐bundling electrospinning technique, a very facile electrospinning technique with a grounded needle (which is to induce the self‐bundling of polymer nanofibers at the beginning of electrospinning process), is used for the alignment and molecular orientation of the polymer fiber, and the take‐up speed of the rotating drum for the electrospun fiber yarn collection is very low (0.5 m/s). PLLA can be dissolved in DMF and CH2Cl2 mixed solvent with different ratios. By varying the ratios of mixed solvent system, PLLA electrospun semihollow fiber with the porous inner structure and compact shell wall could be formed, the thickness of the shell and the size of inner pores could be adjusted. The results of polarized FTIR and wide angle X‐ray diffraction investigations verified that as‐prepared PLLA semihollow fiber yarns were well‐aligned and molecularly oriented. Both the formation mechanism of semihollow fibers with core‐shell structure and the orientation mechanism of polymer chains within the polymer fibers were all discussed. The as‐prepared self‐bundling electrospun PLLA fiber yarns possessed enhanced mechanical performance compared with the corresponding conventional electrospun PLLA fibrous nonwoven membranes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1118–1125, 2010  相似文献   

2.
Polybenzoxazole (PBO) fibers with a submicron diameter were successfully prepared by electrospinning its precursor, polyhydroxyamide (PHA), solutions to obtain the PHA fibers first, followed by appropriate thermal treatments for cyclization reaction. BisAPAF‐IC PHA with two different molecular weights (MWs) were synthesized from a low temperature polymerization of 2,2′‐bis(3‐amino‐4‐hydroxyphenyl) hexafluoropropane (BisAPAF) and isophthaloyl chloride (IC). Using dimethylacetamide (DMAc) and tetrahydrofuran (THF), solvent effects on the electrospinnability of PHA solutions were investigated. For balancing the solution properties, it was found that DMAc/THF mixture with a weight ratio of 1/9 was the best cosolvent to prepare smooth PHA fibers; uniform PHA fibers with a diameter of 325–720 nm were obtained by using 20 wt % PHA/(DMAc/THF) solutions. For a fixed PHA concentration, solutions with a lower MW of PHA yielded thinner electrospun fibers under the same electrospinning condition. After obtaining the electrospun BisAPAF‐IC PHA fibers, subsequent thermal cyclization up to 350 °C produced the corresponding thermally stable BisAPAF‐IC PBO fibers with a diameter of 305–645 nm. The structure of the precursor fibers and the fully cyclized fibers were characterized by FTIR. For the cyclized BisAPAF‐IC PBO fibers, thermogravimetric analysis showed a 5% weight loss temperature at 523 °C in nitrogen atmosphere. The interconnected fiber structure in the BisAPAF‐IC PBO fiber mats was irrelevant to the curing process, but resulted from the jet merging during the whipping process as revealed by the high speed camera images. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8159–8169, 2008  相似文献   

3.
The intermolecular interactions between poly(vinyl chloride) (PVC) and poly(vinyl acetate) (PVAc) in tetrahydrofuran (THF), methyl ethyl ketone (MEK) and N,N-dimethylformamide (DMF) were thoroughly investigated by the viscosity measurement. It has been found that the solvent selected has a great influence upon the polymer-polymer interactions in solution. If using PVAc and THF, or PVAc and DMF to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+THF) or (PVAc+DMF) is less than in corresponding pure solvent of THF or DMF. On the contrary, if using PVAc and MEK to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+MEK) is larger than in pure solvent of MEK. The influence of solvent upon the polymer-polymer interactions also comes from the interaction parameter term Δb, developed from modified Krigbaum and Wall theory. If PVC/PVAc blends with the weight ratio of 1/1 was dissolved in THF or DMF, Δb<0. On the contrary, if PVC/PVAc blends with the same weight ratio was dissolved in MEK, Δb>0. These experimental results show that the compatibility of PVC/PVAc blends is greatly associated with the solvent from which polymer mixtures were cast. The agreement of these results with differential scanning calorimetry measurements of PVC/PVAc blends casting from different solvents is good.  相似文献   

4.
Uniform poly(methyl methacrylate) (PMMA)/silica nanocomposite fibers containing up to 20 wt % silica were prepared by electrospinning. The electrospun solutions were prepared by mixing a solution of PMMA in dimethyl formamide (DMF) with colloidal silica in methyl ethyl ketone (MEK). The average fiber diameter decreases from 2.49 μm to 1.69 μm when 20 wt % silica is incorporated as a result of considerably increased solution conductivity, although the solution viscosity increases significantly, which should result in opposite effect. Thinner fibers (down to 350 nm) can be obtained by changing DMF/MEK proportion and by the addition of an ammonium salt. Nano‐sized silica particles (10–40 nm) distributes homogeneously in the fibers, as revealed by transmission electron microscopy. Furthermore, the incorporation of silica nanoparticles can change the thermal properties and surface wettability of the fiber mats. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1211–1218, 2009  相似文献   

5.
Electrically conductive polyaniline (PANi)/poly(methyl methacrylate) (PMMA) coaxial fibers were prepared through the chemical deposition of PANi onto preformed PMMA fibers via in situ polymerization. PMMA fibers were prepared as core materials via electrospinning. Spectral studies and scanning electron microscopy observations indicated the formation of PANi/PMMA coaxial fibers with a diameter of approximately 290 nm and a PANi layer thickness of approximately 30 nm. The conductivity of the PANi/PMMA coaxial fibers was significantly higher than that of electrospun fibers of PANi/poly(ethylene oxide) blends and blend cast films of the same PANi composition. To reproducibly generate uniform‐core polymer fibers, the organic solution properties that affected the morphology and diameter of the electrospun fibers were investigated. The polymer molecular weight, solution concentration, solvent dielectric constant, and addition of soluble organic salts were strongly correlated to the morphology of the electrospun fiber mat. In particular, the dielectric constants of the solvents substantially influenced both the fiber diameter and bead formation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3934–3942, 2004  相似文献   

6.
The glass transition temperature (Tg) of individual electrospun polymer polyvinyl alcohol fibers of varying diameter was measured using atomic force microscopy (AFM) based nanomechanical thermal analysis. Indentation and bending of individual electrospun fibers using AFM allowed the calculation of the elastic modulus of the polyvinyl alcohol (PVA) fibers across a range of different temperatures. The elastic modulus of electrospun PVA fibers was observed to decrease significantly when passing through Tg, which allowed accurate determination of Tg. The Tg of electrospun PVA fibers was shown to decrease for smaller fiber diameters especially for fiber diameters below 250 nm. This size‐dependent glass transition behavior of electrospun PVA fibers is indicated as being due to polymer chain confinement. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

7.
Although there have been many reports on the preparation and applications of various polymer nanofibers with the electrospinning technique, the understanding of synthetic parameters in electrospinning remains limited. In this article, we investigate experimentally the influence of solvents on the morphology of the poly(vinyl pyrrolidone) (PVP) micro/nanofibers prepared by electrospinning PVP solution in different solvents, including ethanol, dichloromethane (MC) and N,N‐dimethylformamide (DMF). Using 4 wt % PVP solutions, the PVP fibers prepared from MC and DMF solvents had a shape like a bead‐on‐a‐string. In contrast, smooth PVP nanofibers were obtained with ethanol as a solvent although the size distribution of the fibers was somewhat broadened. In an effort to prepare PVP nanofibers with small diameters and narrow size distributions, we developed a strategy of using mixed solvents. The experimental results showed that when the ratio of DMF to ethanol was 50:50 (w/w), regular cylindrical PVP nanofibers with a diameter of 20 nm were successfully prepared. The formation of these thinnest nanofibers could be attributed to the combined effects of ethanol and DMF solvents that optimize the solution viscosity and charge density of the polymer jet. In addition, an interesting helical‐shaped fiber was obtained from 20 wt % PVP solution in a 50:50 (w/w) mixed ethanol/DMF solvent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3721–3726, 2004  相似文献   

8.
Cellulose nonwoven mats of submicron‐sized fibers (150 nm–500 nm in diameter) were obtained by electrospinning cellulose solutions. A solvent system based on lithium chloride (LiCl) and N,N‐dimethylacetamide (DMAc) was used, and the effects of (i) temperature of the collector, (ii) type of collector (aluminum mesh and cellulose filter media), and (iii) postspinning treatment, such as coagulation with water, on the morphology of electrospun fibers were investigated. The scanning electron microscopy (SEM) and X‐ray diffraction studies of as‐spun fibers at room temperature reveal that the morphology of cellulose fibers evolves with time due to moisture absorption and swelling caused by the residual salt and solvent. Although heating the collector greatly enhances the stability of the fiber morphology, the removal of salt by coagulation and DMAc by heating the collector was necessary for the fabrication of dry and stable cellulose fibers with limited moisture absorption and swelling. The presence and removal of the salt before and after coagulation have been identified by electron microprobe and X‐ray diffraction studies. When cellulose filter media is used as a collector, dry and stable fibers were obtained without the coagulation step, and the resulting electrospun fibers exhibit good adhesion to the filter media. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1673–1683, 2005  相似文献   

9.
For conductive carbon nanotube (CN)/polymer composite fibers to be obtained, CNs were incorporated into poly(vinylidene fluoride) (PVDF) in dimethylformamide (DMF) solutions and electrospun to form CN/PVDF fiber mats. The thinnest fiber was 70 nm thick. The percolation threshold for the insulator‐to‐conductor transition was 0.003 wt % CN for CN/PVDF/DMF solutions, 0.015 wt % CN for CN/PVDF spin‐coated films, and 0.04 wt % CN for CN/PVDF electrospun fiber mats. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1572–1577, 2003  相似文献   

10.
Response surface methodology (RSM),based on five‐level, four variable Box‐Benkhen technique was investigated for modeling the average fiber diameter of electrospun polyacrylonitrile (PAN) nanofibers. The four important electrospinning parameters were studied including applied voltage (kV), Berry's number, deposition distance from nozzle to collector (cm), and spinning angle (? in degree). The measured fiber diameters were in a good agreement with the predicted results by using RSM technique. High‐regression coefficient between the variables and the response (R2 = 87.74%) indicates excellent evaluation of experimental data by second‐order polynomial regression model. The optimum PAN average fiber diameters of 208 and 37‐nm standard deviation were collected at 19 kV, Berry's number = 10, 25° spinning angle, and 16‐cm deposition distance. The PAN/N,N‐dimethylformamide (DMF) polymer solution with the optimum weight concentration (10 wt.%) was selected to study the effect of dispersing exfoliated graphite nanoplatelets (EGNPs) in PAN/DMF solution on the electrospun EGNP/PAN fibril composite diameter. Five different EGNPs weight concentrations (2, 4, 6, 8, and 10 wt.%) were dispersed in the optimized PAN/DMF polymer solution. Morphology of EGNPs/PAN fibril composites and its distribution were investigated by scanning electron microscopy (SEM) to show the minimum fiber diameter for the above‐mentioned 5 wt. % of EGNPs. A minimum fibril composite diameter of 182 nm was obtained at 10 wt.% of EGNPs. Morphological characteristics of electrospun fibers and their distribution were tested by Raman spectroscopy, SEM, differential light scattering, and high‐resolution transmission electron microscopy.  相似文献   

11.
Electrospinning is a fiber spinning technique used to produce nanoscale polymeric fibers with superior interconnectivity and specific surface area. The fiber diameter, surface morphology, and mechanical strength are important properties of electrospun fibers that can be tuned for diverse applications. In this study, the authors investigate how the humidity during electrospinning influences these specific properties of the fiber mat. Using two previously uninvestigated polymers, poly(acrylonitrile) (PAN) and polysulfone (PSU) dissolved in N,N‐Dimethylformamide (DMF), experimental results show that increasing humidity during spinning causes an increase in fiber diameter and a decrease in mechanical strength. Moreover, surface features such as roughness or pores become evident when electrospinning in an atmosphere with high relative humidity (RH). However, PAN and PSU fibers are affected differently. PAN has a narrower distribution of fiber diameter regardless of the RH, whereas PSU has a wider and more bimodal distribution under high RH. In addition, PSU fibers spun at high humidity exhibit surface pores and higher specific surface area whereas PAN fibers exhibit an increased surface roughness but no visible pores. These fiber morphologies are caused by a complex interaction between the nonsolvent (water), the hygroscopic solvent (DMF), and the polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

12.
Novel luminescent electrospun (ES) fibers have been successfully prepared from a conjugated rod–coil block copolymer, poly[2,7‐(9,9‐dihexylfluorene)]‐block‐poly(methyl methacrylate) (PF‐b‐PMMA) using a single‐capillary spinneret. Experiment results indicate that PF‐b‐PMMA ES fibers prepared from THF, THF/DMF (50/50), and DMF contain PF block aggregated structures of dot‐like (5–10 nm), line‐like (10–20 nm), and ellipse‐like structure (25–50 nm), respectively. Such variation of aggregation size leads to a red‐shift of the absorption or luminescence spectra. In addition, the fiber diameters decrease upon enhancing the DMF content. The present study demonstrates that blue light‐emitting ES fibers are successfully prepared from conjugated rod–coil diblock copolymers and their aggregate morphology and photophysical properties could be tuned through use of selective solvent.

  相似文献   


13.
利用电纺丝技术制备了二氧化碳环氧丙烷共聚物超细纤维,研究了喷丝口电势、纺丝距离、浓度、溶剂等因素对纤维形貌、直径及均一性的影响.实验结果表明,利用电纺丝法可以制备直径在小于200nm到7μm二氧化碳环氧丙烷共聚物纤维;喷丝口电势和浓度对于共聚物电纺丝纤维是否形成串珠结构有重要影响;电势、距离和纺丝液浓度都对纤维直径及分散系数有较大影响,在一定范围内,随着喷丝口电势增加,纤维平均直径变大而分散系数变小;纺丝距离增大使得纤维平均直径变小,分散系数变大;浓度的增大使得纤维平均直径变大,分散系数变小;不同溶剂配制的溶液体系制备的电纺丝纤维形貌有很大差异,在二氯甲烷和丁酮的体系中,分别观察到了两组较为集中的直径分布.  相似文献   

14.
Simple self‐assembly techniques to fabricate non‐spherical polymer particles, where surface composition and shape can be tuned through temperature and the choice of non‐solvents was developed. A series of amphiphilic polystyrene‐b‐poly(2‐ethyl‐2‐oxazoline) block copolymers were prepared and through solvent exchange techniques using varying non‐solvent composition a range of non‐spherical particles were formed. Faceted phase separated particles approximately 300 nm in diameter were obtained when self‐assembled from tetrahydrofuran (THF) into water compared with unique large multivesicular particles of 1200 nm size being obtained when assembled from THF into ethanol (EtOH). A range of intermediate structures were also prepared from a three part solvent system THF/water/EtOH. These techniques present new tools to engineer the self‐assembly of non‐spherical polymer particles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 750–757  相似文献   

15.
Unlike conventional electrospun polymer fibers deposited on a target electrode as a randomly oriented mesh, poly(p‐xylenetetrahydrothiophenium chloride) was electrospun into centimeters‐long yarns vertically on the surface of the electrode but parallel to the electric field. The diameter of the yarn was strongly affected by the concentration, spinning rate, and viscosity of the polymer solution, but less dependent on the applied voltage. The subsequent carbonization of thus‐electrospun yarns at 600–1000 °C resulted in uniaxially aligned carbon nanofibers with average diameters of 127–184 nm. On the basis of Raman spectra, the graphitic crystallite size and the molar fraction of graphite were estimated to be 1.2–1.4 and 0.21–0.24 nm, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 305–310, 2008  相似文献   

16.
Dispersed solutions of poly(vinylidene fluoride) (PVDF)/polycarbonate (PC) in the mixed solvent of N,N‐dimethylformamide (DMF)/tetrahydrofuran (THF) were used to electrospin in order to discuss the relationship between the properties of the polymer dispersions and the morphology of the obtained ultrafine fibers. With the changes of the mass ratio of PVDF/PC, the relative molecular mass of PVDF, and the volume ratio of DMF/THF, the morphology and the microstructure of the prepared PVDF/PC ultrafine fibers altered in accord with the viscosity, surface tension, and conductivity of the PVDF/PC dispersions. When the PVDF/PC mass ratio varied from 9/1 to 5/5, the ability of the polymer chain entanglement in PVDF/PC dispersion decreased as to the lower relative molecular mass of PC and higher chain rigidity, which lead to the formation of the beaded fibers together with the distinct core/shell structure. Similar phenomenon was also found when the lower molecular mass of PVDF was used instead of a higher one. Though the change of DMF/THF volume ratio did not specifically contribute to the properties of PVDF/PC dispersions, the accelerated evaporation and solubility of the mixed solvent by the THF amount increasing was feasible to generate the uniform fibrous morphology and the distinct core/shell structure. © 2009 Wiley Periodicals, Inc.J Polym Sci Part B: Polym Phys 48: 372–380, 2010  相似文献   

17.
Ultrafine polystyrene (PS)/poly(2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene vinylene) (MEH‐PPV) fibers were successfully prepared by electrospinning of PS/MEH‐PPV solutions in chloroform, 1,2‐dichloroethane, and tetrahydrofuran (THF). Three concentrations of the solutions were prepared: 8.5, 16, and 23.5% (w/v), with the compositional weight ratios between PS and MEH‐PPV being 7.5:1, 15:1, and 22.5:1, respectively. Smooth fibers only observed from 23.5% (w/v) PS/MEH‐PPV solution in chloroform. Improvement in the electrospinnability of 8.5% (w/v) PS/MEH‐PPV solution in chloroform was achieved by addition of an organic salt, pyridinium formate (PF), or by addition of a minor solvent with a high dielectric constant value. The average diameters of the as‐spun PS/MEH‐PPV fibers were between 0.30 and 5.11 μm. Last, photoluminescence of 8.5% (w/v) solutions of PS/MEH‐PPV in a mixed solvent system of chloroform and 1,2‐dichloroethane of various volumetric compositions and the resulting as‐spun fibers was investigated and compared. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1881–1891, 2005  相似文献   

18.
PEG-N-chitosan and PEG-N,O-chitosan were synthesized via reductive amination and acylation of chitosan, respectively. The structures were confirmed by FTIR and H1NMR. The extents of PEGylation increased with reducing chain lengths of either chitosan (M v = 137–400 kDa) or poly(ethyelene glycol) (PEG, M n = 5002 kDa). Water solubility were easily achieved at degree of substitution (DS) as low as 0.2 for either derivtive whereas the PEG-N,O-chitosan at DS = 1.5 was soluble in organic solvents, including CHCl3, DMF, DMSO and THF. None of the aqueous solutions of PEG-N-chitosan or PEG-N,O-chitosan alone could be electrospun into fibers. Electrospinning of PEG550-N,O-chitosan145 at 25% in DMF produced fibrous structure intermixed with beads. The efficiency of fiber formation and the uniformity of fibers were improved by increasing the solution viscosity using a cosolvent or reducing the solution surface tensions with a non-ionic surfactant. Ultra-fine fibers with diameters ranging from 40 nm to 360 nm and an average diameter of 162 nm were efficiently generated from electrospinning of 15% PEG550-N,O-chitosan145 in 75/25 (v/v) THF/DMF cosolvents with 0.5% Triton X-100TM.  相似文献   

19.
The electrospinning technique was used to spin ultra-thin fibers from several polymer/solvent systems. The diameter of the electrospun fibers ranged from 16 nm to 2 μm. The morphology of these fibers was investigated with an atomic force microscope (AFM) and an optical microscope. Polyethylene oxide) (PEO) dissolved in water or chloroform was studied in greater detail. PEO fibers spun from aqueous solution show a “beads on a string” morphology. An AFM study showed that the surface of these fibers is highly ordered. The “beads on a string” morphology can be avoided if PEO is spun from solution in chloroform; the resulting fibers show a lamellar morphology. Polyvinylalcohol (PVA) dissolved in water and cellulose acetate dissolved in acetone were additional polymer/solvent systems which were investigated. Furthermore, the electrospinning process was studied: different experimental lay-outs were tested, electrostatic fields were simulated, and voltage - current characteristics of the electrospinning process were recorded.  相似文献   

20.
This study describes the preparation and characterization of nanofibrous mats obtained by electrospinning poly(ethylene terephthalate) (PET) solutions in trifluoroacetic acid/dichloromethane (TFA/DCM). Special attention was paid to the effect of polymer concentration and solvent properties on the morphology, structure, and mechanical and thermal properties of the electrospun nonwovens. The results show that the spinnable concentration of PET solution in TFA/DCM solvents is above 10 wt %. Mats have nanofibrous morphology with fibers having an average diameter in the range of 200–700 nm (depending on polymer concentration and solvent composition) and an interconnected pore structure. Higher solution concentration favors the formation of uniform fibers without beads and with higher diameter. Morphology and fiber assembly changed with the solvent properties. Solvent mixtures rich in TFA, i.e., those with higher dielectric constant and lower surface tension, originated fibers with small diameter. However, due to the lower volatility, those solvent mixtures also produced more branched and crosslinking fibers, with less morphologic uniformity. Mechanical properties (Young's modulus, ultimate strength, and elongation at break) and thermal properties (glass transition, crystallization, and melting) have been studied for the PET electrospun nanomats and compared with those of the original polymer. Solvent effect on fiber crystallinity was not significant, but a complex effect was observed on the mechanical properties of the electrospun mats, as a consequence of the different structural organization of the fibers within the mat network. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 460–471, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号