首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A continuously operating jet stream dye laser was pumped by a multiwavelength-multimode argon-ion-laser with a pump power up to 200 W. Rhodamine 6G-chloride was dissolved in a water-polyvinylalcohol-ammonyx solution. The dye laser was prism-tunable between 560 and 650 nm with maximum output power at 600 nm. The maximum output power of the cw dye laser was 43 W without tuning element and 33 W with a prism placed inside the cavity. Operation of a jet stream dye laser with a pump power higher than 200 W and an efficiency of about 30% seems to be possible.  相似文献   

2.
By using a pump recycling configuration, we presented a high efficient diode-pumped Tm:YLF laser with a volume Bragg grating. When the incident pump power was 33.1 W, a maximum output power of 11.1 W at 1907.8 nm with full width at half maximum of 0.6 nm was obtained. The slope efficiency with respect to the incident pump power was 44.8%, and the optical-to-optical efficiency was 33.5%. In addition, the VBG-based Tm:YLF laser was employed as a pumping source of Ho:YAG laser, the maximum output power of 4.7 W with a slope efficiency of 67.0% was obtained, corresponding to Tm-to-Ho conversion efficiency of 51.6%.  相似文献   

3.
We present for the first time a Nd:YAG laser emitting at 1064 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 885 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1064 nm intracavity pumped at 946 nm. We achieved an output power of 7.97 W at 1064 nm for an absorbed pump power at 946 nm of 9.55 W, corresponding to an optical efficiency of 83.4%. The beam quality M2 quality factor is about 1.1 at the maximum output power.  相似文献   

4.
A power-scaled laser operation of Pr:YLi F4(YLF)crystal at 720.9 nm pumped by a 443.6 nm laser diode(LD)module was demonstrated.The 20 W module was used to pump the Pr:YLF crystal,and a maximum output power of 3.03 W with slope efficiency of 30.04%was obtained.In addition,a 5 W blue LD was also used to pump the Pr:YLF laser,and a maximum output power of 0.72 W was obtained at room temperature.The output power was limited by the wavelength mismatch between the single-emitter LD and the absorption peak of the crystal.  相似文献   

5.
We present a highly-efficient continuous-wave Ho:SSO laser pumped by a diode-pumped Tm:YAP laser with a narrow linewidth (NL) of 0.3 nm. With the free-running (FR) Tm:YAP laser, we obtain a maximum output power of 2.23 W at an absorption pump power of 7.2 W, corresponding to an optical conversion efficiency of 31% and a slope efficiency of 42.6%. With the NL Tm:YAP laser, we obtain a maximum output power of 2.88 W at the same absorption pump power. The optical conversion efficiency increases to 40% when the slope efficiency increases to 55.5%. The output linewidth of the Ho:SSO laser is 0.8 nm when we use the Tm:YAP laser with a narrow linewidth of 1.8 nm pumped by a FR Tm:YAP laser. The beam quality also changes from 1.31 to 1.22.  相似文献   

6.
报道了Yb∶YAG双波长激光振荡阈值的理论结果,实验获得了连续双波长激光输出.实验中,采用紧凑的平凹腔结构、940nm光纤耦合LD端面泵浦方式,Yb∶YAG晶体作为激光晶体,采用10%、15%和20%的输出耦合镜,分别实现了单波长和双波长激光输出,在最高泵浦功率为20 W时,输出耦合率分别为10%、20%,最高获得3.94W的1 050nm激光和3.40 W的1 030nm激光,对应的光光转换效率分别为19.7%和17.0%;当输出耦合率为15%、泵浦功率为11.7 W时,获得0.79 W的双波长激光,对应的光光转换效率为6.8%,功率比为1∶1.3,通过光栅光谱仪测量得到双波长谱线中心分别为1 030.31nm和1 047.50nm;当1 030nm激光功率为3.0 W时,30min内输出功率RMS稳定性优于0.18%.该实验结果与理论分析相吻合,可应用于设计稳定可靠的掺Yb双波长激光器.  相似文献   

7.
We demonstrate a cw and actively Q-switched Er.LuAG laser resonantly dual-end-pumped by 1532 nm fibrecoupled laser diodes.A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W,corresponding to a slope efficiency of 43.3%.In the Q-switched regime,the maximum pulse energy of3.51 mJ is reached at a pulse repetition rate of 100 Hz,a pulse duration of 90.5 ns and a pump power of 25.5 W.At the repetition rate of 400 Hz,the output energy is 2.12 mJ,corresponding to a pulse duration of 125.4 ns.  相似文献   

8.
A high-power singlemode Raman fiber laser (RFL) with maximum output power of 4.11 W and maximum power conversion efficiency of 47.40% at 1239 nm is realized using continuous wave 8.4 W Yb-doped double-clad fiber laser as a pump, 700 m phosphosilicate fiber, and a Raman cavity formed by a pair of fiber Bragg grating mirrors at 1239 nm. The output characteristics of the RFL at 1239 nm for different fiber lengths and output mirror reflectance are reported. Theoretical simulation is done to numerically optimize for fiber length and output coupler reflectivity to obtain maximum first Stokes power.  相似文献   

9.
樊莉  赵伟倩  乔鑫  夏长权  汪丽春  范会博  沈明亚 《中国物理 B》2016,25(11):114207-114207
We report an efficient continuous-wave self-Raman laser at 1176 nm based on a 20-mm-long composite YVO_4/Nd:YVO_4/YVO_4 crystal and pumped by a wavelength-locked 878.9 nm diode laser.A maximum output power of 5.3 W is achieved at a pump power of 26 W,corresponding to an optical conversion efficiency of 20%and a slope efficiency of 21%.The Raman threshold for the diode pump power was only 0.92 W.The results reveal that in-band pumping by a wavelength-locked diode laser significantly enhances output power and efficiency of self-Raman lasers by virtue of improved pump absorption and relieved thermal loading.  相似文献   

10.
A high power continuous-wave (CW) diode-pumped Nd:YAG laser operated in heat capacity mode is demonstrated by use of two identical highly efficient diode-pumped laser heads placed in a plane-plane resonator. The laser heads are uniformly pumped with a five-fold symmetrical side-pumping configuration,and each head is able to output maximum output power of 2200 W at 808 nm. Under a total pump power of 4290 W, the output power of the laser at 1064 nm is up to 2277 W, corresponding to an optical-to-optical efficiency of 53.1%.  相似文献   

11.
Efficient high-power operation of double-clad Er,Yb-doped fiber lasers with fixed-wavelength and wavelength-tunable resonator configurations using volume Bragg gratings for wavelength selection are reported. The fixed-wavelength laser yielded a maximum output power of 103 W at 1552.6 nm with a linewidth of ~0.4 nm (FWHM) for a launched pump power of 290 W at 976 nm. The wavelength-tunable laser could be tuned from 1528 to 1550 nm with a linewidth of 0.2 nm (FWHM) and with output power in the range 30-38 W for a launched pump power of 120 W. The prospects for further improvement in performance are considered.  相似文献   

12.
J. H. Liu  G. C. Sun  Y. D. Lee 《Laser Physics》2012,22(7):1199-1201
We report a continuous-wave (CW) yellow laser emission by sum-frequency mixing in Nd:YVO4 crystal. Using type-II critical phase-matching KTP crystal, a yellow laser at 593.5 nm is obtained by 1064 and 1342 nm intracavity sum-frequency mixing. The maximum laser output power of 2.1 W is obtained when an incident pump laser of 18.2 W is used. At the output power level of 2.1 W, the output stability is better than 3.2%.  相似文献   

13.
采用放大1064 nm掺镱光纤激光器作为泵浦源,实现了中红外3.8μm MgO:PPLN光参量振荡(OPO)激光输出。在泵浦源中,采用分布式反馈激光器(DFB)作为种子源来实现光纤激光窄线宽的调制,实现线宽2.5 nm到0.1 nm的压缩,最大平均输出功率可达40 W。进一步对不同泵浦线宽条件下中红外3.8μm MgO:PPLN OPO激光进行研究,最终在泵浦功率为18.1 W、线宽为0.1 nm、重频为1 MHz、脉宽为2 ns时,获得了最高平均输出功率为2.06 W的3822.5 nm激光输出,光-光转换效率为11.38%,光束质量为M2=2.34,提高了窄线宽泵浦对中红外MgO:PPLN OPO激光输出效率。  相似文献   

14.
A high power continuous-wave deep blue laser at 447 nm is obtained by using a doubly cavity and a type H critical phase matching KTP crystal for intracavity sum-frequency-mixing. With the incident pump power of 240 W for the Nd:YAP crystal and 120 W for the other Nd:YAP crystal, the deep blue laser output of 5.7 W at 447 nm with near fundamental mode is obtained, and the beam quality M^2 value equals 2.53 in both horizontal and vertical directions at the maximum output power. The power stability is better than 2% at the maximum output power during half an hour. The experimental results show that the intracavity sum-frequency mixing by doubly resonant is an effective method for high power blue laser.  相似文献   

15.
Zhou R  Li E  Li H  Wang P  Yao J 《Optics letters》2006,31(12):1869-1871
A high-power continuous-wave (cw) Nd:YAG laser operating at 946 nm by utilizing a quasi-three-level transition is reported. The laser consists of a composite Nd:YAG rod end pumped by a fiber-coupled diode laser and a simple plane-concave cavity. At an incident pump power of 40.2 W, a maximum cw output of 15.2 W at 946 nm is obtained, achieving a slope efficiency of 45%. To the best of our knowledge, this is the highest output at 946 nm ever generated by diode-pumped Nd:YAG lasers. In addition, at an incident pump power of 15.2 W, a 1.25 W blue output at 473 nm is achieved with a simple compact three-element cavity and a type-I lithium triborate (LiB(3)O(5)) crystal as a frequency doubler.  相似文献   

16.
We report on high-power operation of a fiber distributed-feedback (DFB) laser fabricated from Tm-doped photosensitive alumino-silicate fiber and in-band pumped by an Er/Yb fiber laser at 1565 nm. The fiber DFB laser yielded up to 875 mW of single-ended output at 1943 nm on two orthogonally polarized modes for 3.5 W of absorbed pump power. Further scaling of the DFB laser output power was achieved with the aid of a simple Tm-doped fiber amplifier stage spliced directly to the DFB fiber without the need of an optical isolator. The maximum output power from the DFB laser and fiber amplifier was >3 W for a combined absorbed pump power of 8.1 W. The influence of thermal loading, owing to quantum defect heating in the Tm-doped core, on the output power and longitudinal mode behavior is discussed, and the prospects for further improvement in performance are considered.  相似文献   

17.
An actively mode-locked Ho:YAG laser pumped by a diode-pumped Tm-doped fiber laser is reported.For the cw operation,we obtain the maximum output power of 3.43 W with a central wavelength 2022.2 nm at the maximum incident pump power of 11.4 W,corresponding to a slope efficiency of 34.5%.The beam quality factor M2 is 1.16,and the output beam is close to fundamental TEM_(00) In the case of the CWML operation,a stable pulse train is generated with an average output power up to 3.41 W with a slope efficiency of 34.3%at the incident pump power of 11.4 W and a pulse duration of 294 ps at a repetition rate of 81.92 MHz.In addition,the maximum single pulse energy is 41.6 n J.  相似文献   

18.
Wang Y  Shen D  Chen H  Zhang J  Qin X  Tang D  Yang X  Zhao T 《Optics letters》2011,36(23):4485-4487
We report on a highly efficient polycrystalline Tm:YAG ceramic laser in-band pumped by an Er:YAG laser at 1617 nm. Lasing characteristics of 4.0 and 6.0 at.%Tm(3+)-doped YAG ceramics were investigated and compared. With an output coupler of 10% transmission, a maximum output power of 7.3 W was obtained at 2015 nm under 12.8 W of incident pump power, corresponding to a slope efficiency with respect to incident pump power of 62.3%.  相似文献   

19.
A diode-pumped high-repetition-rate acousto-optically (A-O) Q-switched Nd:YVO4 laser operating at 914 nm was reported in this paper. Employing a compact linear laser cavity, at an operating repetition rate of 10 kHz, a maximum average output power of 2.2 W 914 nm laser was obtained at an incident pump power of 45.3 W, corresponding to an optical conversion efficiency of 4.9% and a slope efficiency of 8.8%. Minimum pulse width of 24 ns and maximum peak power of 8.0 kW of 914 nm laser was also achieved at an incident pump power of 40.8 W. To the best of our knowledge, this is the highest peak power of 914 nm laser at 10 kHz by far. Moreover, the highest operating repetition rate of pulsed 914 nm can even reach 100 kHz.  相似文献   

20.
 以国产掺Yb光纤为增益介质,利用国产泵浦源和光纤器件,构建了主振荡功率放大结构的全国产大功率全光纤激光器。在注入的最大泵浦功率为75 W时,获得了52.5 W,1 080 nm激光的稳定输出,光-光效率为70%。实验结果表明,提高泵浦功率可获得更高的输出功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号