首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We consider   ut = u α uxxx + n ( u ) uxuxx + m ( u ) u 3 x + r ( u ) uxx + p ( u ) u 2 x + q ( u ) ux + s ( u )  with  α= 0  and  α= 3  , for those functional forms of   m , n , p , q , r , s   for which the equation is integrable in the sense of an infinite number of Lie-Bäcklund symmetries. Recursion operators which are x - and t -independent that generate these infinite sets of (local) symmetries are obtained for the equations. A combination of potential forms, hodograph transformations, and x -generalized hodograph transformations are applied to the obtained equations.  相似文献   

2.
In this paper, we rigorously prove the existence and stability of asymmetric spotty patterns for the Gray–Scott model in a bounded two-dimensional domain. We show that given any two positive integers   k 1, k 2  , there are asymmetric solutions with   k 1  large spots (type A) and   k 2  small spots (type B). We also give conditions for their location and calculate their heights. Most of these asymmetric solutions are shown to be unstable. However, in a narrow range of parameters, asymmetric solutions may be stable.  相似文献   

3.
We prove that arbitrary (nonpolynomial) scalar evolution equations of order    m  ≥ 7  , that are integrable in the sense of admitting the canonical conserved densities   ρ(1), ρ(2)  , and   ρ(3)   introduced in [ 1 ], are polynomial in the derivatives    u m −  i    for  i  = 0, 1, 2. We also introduce a grading in the algebra of polynomials in     u k     with     k  ≥  m  − 2    over the ring of functions in     x ,  t ,  u , … ,  u m −3    and show that integrable equations are scale homogeneous with respect to this grading .  相似文献   

4.
We study characteristic Cauchy problems for the Korteweg–de Vries (KdV) equation ut = uux + uxxx , and the Kadomtsev–Petviashvili (KP) equation uyy =( uxxx + uux + ut ) x with holomorphic initial data possessing non-negative Taylor coefficients around the origin. For the KdV equation with initial value u (0,  x )= u 0( x ), we show that there is no solution holomorphic in any neighborhood of ( t ,  x )=(0, 0) in C2 unless u 0( x )= a 0+ a 1 x . This also furnishes a nonexistence result for a class of y -independent solutions of the KP equation. We extend this to y -dependent cases by considering initial values given at y =0, u ( t ,  x , 0)= u 0( x ,  t ), uy ( t ,  x , 0)= u 1( x ,  t ), where the Taylor coefficients of u 0 and u 1 around t =0, x =0 are assumed non-negative. We prove that there is no holomorphic solution around the origin in C3, unless u 0 and u 1 are polynomials of degree 2 or lower. MSC 2000: 35Q53, 35B30, 35C10.  相似文献   

5.
In this paper we consider nonlinear ordinary differential equations   y ( n )= F ( y ', y , x )  of arbitrary order   n ≥ 3  , where F is algebraic in   y , y '  and locally analytic in x . We prove that for   n > 3  these equations always admit movable branch points. In the case   n = 3  these equations admit movable branch points unless they are of the known class   y '= a ( x )( y ')2+ ( b 2( x ) y 2+ b 1( x ) y + b 0( x )) y '+ ( c 4( x ) y 4+ c 3( x ) y 3+ c 2( x ) y 2+ c 1( x ) y + c 0( x ))  , where   a ,  bj ,  cj   are locally analytic in x .  相似文献   

6.
We consider a cluster system in which each cluster is characterized by two parameters: an "order" i , following HortonStrahler rules, and a "mass" j following the usual additive rule. Denoting by c i,j ( t ) the concentration of clusters of order i and mass j at time t , we derive a coagulation-like ordinary differential system for the time dynamics of these clusters. Results about the existence and the behavior of solutions as   t   are obtained; in particular, we prove that   c i,j ( t ) 0  and   N i ( c ( t )) 0  as   t ,  where the functional   N i (·)  measures the total amount of clusters of a given fixed order i . Exact and approximate equations for the time evolution of these functionals are derived. We also present numerical results that suggest the existence of self-similar solutions to these approximate equations and discuss their possible relevance for an interpretation of Horton's law of river numbers.  相似文献   

7.
If an ordinary differential equation admits the nonsolvable Lie algebra     , and we use any of its generators to reduce the order, the reduced equation does not inherit the remaining symmetries. We prove here how the lost symmetries can be recovered as   C   -symmetries of the reduced equation. If the order of the last reduced equation is higher than one, these   C   -symmetries can be used to obtain new order reductions. As a consequence, a classification of the third-order equations that admit     as symmetry algebra is given and a step-by-step method to solve the equations is presented.  相似文献   

8.
Consider the 1+1-dimensional quasi-linear diffusion equations with convection and source term u t =[ u m ( u x ) n ] x + P ( u ) u x + Q ( u ) , where P and Q are both smooth functions. We obtain conditions under which the equations admit the Lie Bäcklund conditional symmetry with characteristic η= u xx + H ( u ) u 2 x + G ( u )( u x )2− n + F ( u ) u 1− n x and the Hamilton–Jacobi sign-invariant J = u t + A ( u ) u n +1 x + B ( u ) u x + C ( u ) which preserves both signs, ≥0 and ≤0, on the solution manifold. As a result, the corresponding solutions associated with the symmetries are obtained explicitly, or they are reduced to solve two-dimensional dynamical systems.  相似文献   

9.
Using the method of balancing arguments, large time asymptotic behaviors for the periodic solutions of generalized Burgers equations   ut  +  u 3 ux  +  ju /2 t  =δ/2 uxx   and   ut  +  u 3 ux  +λ u  =δ/2 uxx   subject to the periodic initial condition     and the vanishing boundary conditions   u (0,  t ) =  u ( l ,  t ) = 0,   t  ≥ 0   or    t 0,  where   A ,  A 1, δ, λ,  l ,  t 0, ∈ R +  and   j  = 1, 2  , are obtained.  相似文献   

10.
In this article we study various systems that represent the shallow water wave equation
vxxt + αvvt − βvxx-1 ( vt ) − vt − vx = 0,
where (∂ x −1 f )( x )=∫ x f ( y ) d y , and α and β are arbitrary, nonzero, constants. The classical method of Lie, the nonclassical method of Bluman and Cole [ J. Math. Mech. 18:1025 (1969)], and the direct method of Clarkson and Kruskal [ J. Math. Phys. 30:2201 (1989)] are each applied to these systems to obtain their symmetry reductions. It is shown that for both the nonclassical and direct methods unusual phenomena can occur, which leads us to question the relationship between these methods for systems of equations. In particular an example is exhibited in which the direct method obtains a reduction that the nonclassical method does not.  相似文献   

11.
Let   Q ( x ) = q 2 m x 2 m + q 2 m −1 x 2 m −1+⋯  be a polynomial of degree 2 m with   q 2 m > 0  , and let  {π n ( x )} n ≥1  be the sequence of monic polynomials orthogonal with respect to the weight   w ( x ) = e − Q ( x )  on     . Furthermore, let  α n   and  β n   denote the Mhaskar–Rakhmanov–Saff (MRS) numbers associated with Q ( x ). By using the Riemann–Hilbert approach, an asymptotic expansion is constructed for  π n ( cnz + dn )  , which holds uniformly for all z bounded away from  (−∞, −1)  , where     and     .  相似文献   

12.
We study the large-time behavior of solutions to Burgers' equation with localized initial conditions. Previous studies have demonstrated that these solutions converge to a self-similar asymptotic solution  Θ( x, t )  with an error whose   Lp   norm is of order   t −1+1/2 p   . Noting that the temporal and spatial translational invariance of the underlying equations leads to a two-parameter family of self-similar solutions  Θ( x − x *, t + t *)  , we demonstrate that the optimal choice of   x *  and   t *  reduces the   Lp   error to the order of   t −2+1/2 p   .  相似文献   

13.
Asymptotic formulas, as  ɛ→ 0+  , are derived for the solutions of the nonlinear differential equation  ɛ u" + Q ( u ) = 0  with boundary conditions   u (-1) = u (1) = 0  or   u '(-1) = u '(1) = 0  . The nonlinear term Q ( u ) behaves like a cubic; it vanishes at   s -, 0, s +  and nowhere else in  [ s -, s +]  , where   s - < 0 < s +  . Furthermore,   Q '( s ±) < 0, Q '(0) > 0  and the integral of Q on the interval [ s -, s +] is zero. Solutions to these boundary-value problems are shown to exhibit internal shock layers, and the error terms in the asymptotic approximations are demonstrated to be exponentially small. Estimates are obtained for the number of internal shocks that a solution can have, and the total numbers of solutions to these problems are also given. All results here are established rigorously in the mathematical sense.  相似文献   

14.
A class of second-order rational ordinary differential equations, admitting certain families of formal algebraic series solutions, is considered. For all solutions of these equations, it is shown that any movable singularity that can be reached by analytic continuation along a finite-length curve is an algebraic branch point. The existence of these formal series expansions is straightforward to determine for any given equation in the class considered. We apply the theorem to a family of equations, admitting different kinds of algebraic singularities. As a further application we recover the known fact for generic values of parameters that the only movable singularities of solutions of the Painlevé equations   PII – P   VI   are poles.  相似文献   

15.
The special case of the (p + 1)th degree algebraic equations of the kind xp+1 = xp + 1 (p = 1, 2, 3, …) is researched in the present article. For the case p = 1, the given equation is reduced to the well-known Golden Proportion equation x2 = x + 1. These equations are called the golden algebraic equations because the golden p-proportions τp, special irrational numbers that follow from Pascal’s triangle, are their roots. A research on the general properties of the roots of the golden algebraic equations is carried out in this article. In particular, formulas are derived for the golden algebraic equations that have degree greater than p + 1. There is reason to suppose that algebraic equations derived by the authors in the present article will interest theoretical physicists. For example, these algebraic equations could be found in the research of the energy relationships within the structures of many compounds and physical particles. For the case of butadiene (C4H6), this fact is proved by the famous physicist Richard Feynman.  相似文献   

16.
Propositions about the nonexistence of complex zeros of the functions Hμ(z)=Jμ(z)+zJμ(z),Jμ(z),Jμ(z), where Jμ(z) and Jμ(z) are the first two derivatives of the Bessel functions Jμ(z), for μ in general complex are proved. Bounds for the purely imaginary zeros of the above functions assuming their existence are given. Thus for the range of values for which these bounds are violated there are no purely imaginary zeros of the above functions. Finally, some known results from previous work are generalized in the present paper.  相似文献   

17.
In this paper, nonlocal symmetries for the bilinear KP and bilinear BKP equations are re-studied. Two arbitrary parameters are introduced in these nonlocal symmetries by considering gauge invariance of the bilinear KP and bilinear BKP equations under the transformation     . By expanding these nonlocal symmetries in power series of each of two parameters, we have derived two types of bilinear NKP hierarchies and two types of bilinear NBKP hierarchies. An impressive observation is that bilinear positive and negative KP (NKP) and BKP hierarchies may be derived from the same nonlocal symmetries for the KP and BKP equations. Besides, as two concrete examples, we have derived bilinear Bäcklund transformations for   t −2  -flow of the NKP hierarchy and   t −1  -flow of the NBKP hierarchy. All these results have made it clear that more nice integrable properties would be found for these obtained NKP hierarchies and NBKP hierarchies. Because KP and BKP hierarchies have played an essential role in soliton theory, we believe that the bilinear NKP and NBKP hierarchies will have their right place in this field.  相似文献   

18.
In this paper, one-dimensional optimal system of group invariant solutions of (2 + 1)-dimensional Klein–Gordon system is constructed. Then the classification of group invariant solutions is given out and the corresponding two-dimensional symmetry reduced equations are obtained. At last some symmetry transformations are gained in detail. Especially, we obtain the most general solution from a given solution by use of six variable one-parameter subgroups transformations.  相似文献   

19.
文娅琼  李姣芬  黎稳 《数学学报》2019,62(6):833-852
Trench在[Characterization and properties of (R,S_σ)-commutative matrices,Linear Algebra Appl.,2012,436:4261-4278]中给出了(R,S_σ)-交换矩阵的定义.本文在此基础上讨论(R,S_σ)-交换矩阵的一般性结构,对给定的矩阵X,Y,B,D,以及线性方程组AX=B,YA=D在(R,S_σ)-交换矩阵集合中的最小二乘问题及最佳逼近问题.细致分析最小二乘(R,S_σ)-交换解和最佳逼近解的具体解析表达式.同时在方程组相容情况下分析(R,S_σ)-交换解存在的充要条件及其具体解析表达式.  相似文献   

20.
The linear stability properties of an incompressible axisymmetrical vortex of axial velocity   W 0( r )  and angular velocity  Ω0( r )  are considered in the limit of large Reynolds number. Inviscid approximations and viscous WKBJ approximations for three-dimensional linear normal modes are first constructed. They are then shown to be singular at the critical points rc satisfying  ω= m Ω0( rc ) + kW 0( rc )  , where ω is the frequency, k and m the axial and azimuthal wavenumbers. The goal of this paper is to resolve these singularities. We show that a viscous critical-layer analysis is analytically tractable. It leads to a single sixth-order equation for the perturbation pressure. This equation is identical to the one obtained in stratified shear flows for a Prandtl number equal to 1. Integral expressions for typical solutions of this equation are provided and matched to the outer inviscid and viscous approximations in the complex plane around rc . As for planar flows, it is proved that the critical layer solution with a balanced behavior matches a non-viscous approximation in a  4π/3  sector of the complex-plane. As a consequence, the Frobenius expansions of a non-viscous mode on each side of a critical point rc differ by a π phase jump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号