首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Viscous Critical-Layer Analysis of Vortex Normal Modes
Authors:Stéphane Le Dizès
Institution:Universités D'Aix-Marseille I &II
Abstract:The linear stability properties of an incompressible axisymmetrical vortex of axial velocity   W 0( r )  and angular velocity  Ω0( r )  are considered in the limit of large Reynolds number. Inviscid approximations and viscous WKBJ approximations for three-dimensional linear normal modes are first constructed. They are then shown to be singular at the critical points rc satisfying  ω= m Ω0( rc ) + kW 0( rc )  , where ω is the frequency, k and m the axial and azimuthal wavenumbers. The goal of this paper is to resolve these singularities. We show that a viscous critical-layer analysis is analytically tractable. It leads to a single sixth-order equation for the perturbation pressure. This equation is identical to the one obtained in stratified shear flows for a Prandtl number equal to 1. Integral expressions for typical solutions of this equation are provided and matched to the outer inviscid and viscous approximations in the complex plane around rc . As for planar flows, it is proved that the critical layer solution with a balanced behavior matches a non-viscous approximation in a  4π/3  sector of the complex-plane. As a consequence, the Frobenius expansions of a non-viscous mode on each side of a critical point rc differ by a π phase jump.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号