首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This paper presents the results of a study on the optimization of the determination of total arsenic and its species using the absorption atomic spectrometry method combined with hydride generation and in-situ concentration on the inner walls of the graphite tube. To ensure a maximum efficiency of the in-situ analyte concentration on the graphite tube walls, a palladium modifier subjected to preliminary thermal reduction was used. The limits of detection (3σ) were 0.019 ng/mL for total As and 0.031 ng/mL for As(III) at the preliminary analyte concentration for 60s. The optimised procedure of the analyte concentration on the inner walls of the atomiser (graphite tube) was applied for determinations of arsenic in samples of ground water. The content of arsenic in the samples studied varied from 0.21 ng/mL to 0.80 ng/mL for As(III), and from 0.19 ng/mL to 1.24 ng/mL for As(V).  相似文献   

2.
Yalçin S  Le XC 《Talanta》1998,47(3):787-796
Routine water analysis of arsenic species requires simple, inexpensive, rapid and sensitive methods. To this end, we have developed two methods, which are based on the use of inexpensive solid phase extraction (SPE) cartridges as low pressure chromatographic columns for separation and hydride generation atomic absorption spectrometry (HGAAS) and hydride generation atomic fluorescence spectrometry (HGAFS) for detection of arsenic. Both anion exchange and reverse phase cartridges were successfully used to separate arsenite [As(III)] and arsenate [As(V)]. The composition, concentration, and pH of eluting buffers and the effect of flow rate were systematically investigated. Speciation of inorganic As(III) and As(V) were achieved within 1.5 min, with detection limits of 0.2 and 0.4 ng/ml, respectively. Both isocratic and step gradient elution techniques were suitable for the baseline resolution of As(III) and As(V) using anion exchange cartridges. Application of the methods to the speciation of As(III) and As(V) in untreated water, tap water, and bottled water samples were demonstrated. Results from the speciation of arsenic in a standard reference material water sample using these methods were in good agreement with the certified value and with inter-laboratory comparison results obtained using HPLC separation and inductively coupled plasma mass spectrometric detection (HPLC-ICPMS).  相似文献   

3.
This paper reports the results of an optimisation study for a procedure to determine the total selenium and its inorganic species, Se(IV) and Se(VI) using atomic absorption spectrometry combined with hydride generation and in-situ trapping of the analyte on the inner walls of the graphite tube. With the use of the proposed modification, a detection limit (3σ) of 0.018 ng/ml is achieved. This paper presents exemplary results, according to the proposed procedure, for selenium determination in samples of marine water. The concentrations of selenium in the samples ranged from <0.02 ng/ml to 0.16ng/ml of Se(IV) and from <0.02 ng/ml to 0.10 ng/ml of Se(VI).  相似文献   

4.
A method was developed for the determination of arsenite [As(III)] and arsenate [As(V)] in water samples using flow injection online sorption coupled with hydride generation atomic fluorescence spectrometry (HG-AFS) using a cigarette filter as the sorbent. Selective determination of As(III) was achieved through online formation and retention of the pyrrolidine dithiocarbamate arsenic complex on the cigarette filter, but As(V) which did not form complexes was discarded. After reducing As(V) to As(III) using L-cysteine, total arsenic was determined by HG-AFS. The concentration of As(V) was calculated by the difference between As(III) and total arsenic. The analytes were eluted from the sorbent using 1.68 mol L?1 HCl. With consumption of 22 mL of the sample solution, the enrichment factor of As(III) was 25.6. The detection limits (3σ/k) and the relative standard deviation for 11 replicate determinations of 1.0 ng mL?1 As(III) were found to be 7.4 pg mL?1 and 2.6%, respectively.  相似文献   

5.
Summary A method for the on-line prereduction of As(V) was developed in order to determine As(III) and As(V) with the same sensitivity by continuous flow hydride generation. In this procedure, the sample is continuously mixed with concentrated hydrochloric acid and a potassium iodideascorbic acid solution, flows through a heated PTFE-tube and is determined by hydride generation atomic absorption spectrometry in a heated quartz cell. The selective analysis of As(III) is carried out by continuous mixing of the sample with acetic acid and hydride generation. The method allows the rapid determination of inorganic arsenic species at concentrations down to 1 g/l. A manual sample preparation is not required.  相似文献   

6.
Determination of tributyltin concentrations in water at low levels (0.1–1 ppt) is possible with the hydride generation/gas chromatographic separation/atomic absorption spectrophotometric method. This technique can easily be adapted for the determination of arsenic and methylated arsenic species. Arsenic (III) and arsenic (V) can be separated by selective coprecipitation with dibenzyldithiocarbamate.  相似文献   

7.
A flow-injection system with electrochemical hydride generation and atomic absorption detection for As(III)/As(V) determination is described. A simple electrolytic flow-through cell has been developed and optimized. Several cathode materials like Pt, Ag, Cu, C and Pb have been tested. The influence of the electrolysis current, concentration of sulfuric acid, carrier stream, flow rate, sample volume and interferences by other metals on the arsenichydride generation have been studied. For the determination of total inorganic arsenic, As(V) is reduced to As(III) on-line by postassium iodide or L-cysteine at 95 degrees C. The influence of the temperature and the reduction medium on this pre-reduction step has been tested. The calibration curve is linear in the range of 5 to 50 microg/L for As(III) and total inorganic arsenic and shows a higher sensitivity than in case of reduction with sodium tetrahydroborate. The detection limit is 0.4 microg/L for As(III) and 0.5 microg/L for total inorganic arsenic at a sample volume of 1 mL.  相似文献   

8.
An on-line flow injection-hydride generation/atomic absorption spectrometry method was developed for the preconcentration and selective determination of inorganic arsenic [As(III) and As(V)] and its methylated species. The separation of the arsenic species was performed by an automated pH-selective arsines generation technique, using sodium tetrahydroborate(III) as reductant. Each arsine was cryogenically trapped in a PTFE coil, knotted and sealed inside another wider diameter tube, through which liquid nitrogen was suctioned by negative pressure. Then, based on their different boiling points, the arsine species were selectively liberated by using a heating cycle of microwave radiation, followed by atomic absorption detection. A sample solution aliquot mixed with 1% citric acid was used for the determination of As(III) alone, while a second sample aliquot mixed with 2 mol l(-1) nitric acid was used for the quantitative determination of total inorganic arsenic, monomethylarsonic acid and dimethylarsinic acid. Based on 10 ml sample, the detection limits lie within the range 20-60 ng As l(-1), which are sufficiently low to detect the arsines-forming species in natural waters. These values are negatively affected by the reagents purity and background noise due to flame flickering, but the sensitivity can substantially be improved by increasing sample size or running several consecutive reactions.  相似文献   

9.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

10.
A method for direct de termination of total in organic arsenic (III+V), arsenic (III) and dimethylarsinate (DMA) in sea water was developed by combining continuous‐flow selective hydride generation and inductively coupled plasma mass spectrometry (ICP‐MS) is presented. The principle underlying selective hydride generation is based on proper control of the reaction conditions for achieving separation of the respective arsenic species. The effects of pH and composition of reaction media on mutual interference between the arsenic species were investigated in detail. The results indicate that the appropriate media for the selective determination of total in organic arsenic, DMA and As(III) are 6 M HNO3, acetate buffer at pH = 4.63 and citrate buffer at pH = 6.54, respectively. The concentrations of total inorganic arsenic species, As(III+V), and As(III) were respectively deter mined and that of As(V) was obtained by the difference between them. As to the concentration of DMA, it was obtained after correction from the interference caused by As(III) and As(V). By following the established procedure, the detection lim its (as based on 3‐sigma criterion) for As(III+V), As(III) and DMA were 0.050, 0.009, and 0.002 ng/mL, respectively. There liability of the pro posed method was evaluated in terms of precision and spike addition. The results indicated that the precision of better than 3% and spike recovery of 95 to 105% for all the arsenic species tested in the natural sea water samples can be obtained.  相似文献   

11.
Differentiation between As(III) and As(V) is accomplished using earlier developed selective preconcentration methods (carbamate and molybdate mediated (co)precipitation of As(III) and As(V) respectively) follewed by AAS detection of the (co)precipitates. Apart from this, separation of methylated arsenic species is performed by an automatable system comprising a continuous flow hydride generation unit in which monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) are converted into their corresponding volatile methylarsines, monomethylarsine (MMA) and dimethylarsine (DMA) respectively. These species are cryogenically trapped in a Teflon-line stainless stell U-tube packed with a gas chromatographic solid-phase and subsequently separated by selective volatilization. A novel gas drying technique by means of a Perma Pure dryer was applied successfully prior to trapping. Detection is by atomic absorption spectrometry (AAS). MMAA and DMAA are determined with absolute limits of detection of 0.2 and 0.5 ng, respectively. Investigation of the behaviour of the methylarsines in the system was conducted with synthesized73As labeled methylated arsenic species. It was found that MMA is taken through the system quantitatively whereas DMA is recovered for about 85%. The opumized system combined with selective As(III)/As(V) preconcentration has been tested out for arsenic speciation of sediment interstitial water from the Chemiehaven at Rotterdam. The obtained concentrations are 28.5, 26.8 and 0.60 ng·ml–1 for As(III), As(V) and MMAA, respectively, whereas the DMAA concentration was below 0.16 ng·ml–1.  相似文献   

12.
The pentavalent inorganic arsenic (As) species [As(V)] is found to be 4% more sensitive than the trivalent species [As(III)] with inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). Although there was no sensitivity difference between As(III) and As(V) with atomic absorption spectrometry (AAS), electrothermal atomization atomic absorption spectrometry (ETAAS), X-ray fluorescence (XRF), and neutron activation analysis (NAA). The calibration solutions of As(III) and As(V) were gravimetrically prepared from the unique mother standard solution of JCSS As standard solution which is certified by Japan Calibration Service System (JCSS). Since it is essential to use the calibration solutions with exactly the same concentration of As in order to accurately compare the sensitivities between As(III) and As(V). The mechanisms of this sensitivity difference between them were investigated by ICP-MS and ICP-OES, and it elucidated that the formation rates of hydride polyatomic species of As were definitively different between As(III) and As(V) species in the plasma. This phenomenon directly affected their sensitivities with ICP-MS and ICP-OES.  相似文献   

13.
Muñoz O  Vélez D  Montoro R 《The Analyst》1999,124(4):601-607
A method for the selective quantitative determination of inorganic arsenic [As(III) + As(V)] in seafood was developed. In order to do so, various procedures for the solubilization and extraction of inorganic arsenic quoted in the literature were tested. None provided satisfactory recoveries for As(III) and As(V) in real samples. Consequently, a methodology was developed which included solubilization with HCl and subsequent extraction with chloroform. The arsenic was solubilized in 9 mol l-1 hydrochloric acid. After reduction by hydrobromic acid and hydrazine sulfate, the inorganic arsenic was extracted into chloroform, back-extracted into 1 mol l-1 HCl, dry-ashed, and quantified by hydride generation-atomic absorption spectrometry (HG-AAS). The analytical features of the method are as follows: detection limit, 3.07 ng g-1 As (fresh mass); precision (RSD), 4.0%; recovery, As(III) 99%, As(V) 96%. In the optimized conditions, other arsenic species--dimethylarsinic acid (DMA), arsenobetaine (AB), arsenocholine (AC) and tetramethylarsonium-ion (TMA+)--were not co-extracted. However, different percentages of minor species were extracted with chloroform: monomethylarsonic acid (MMA) 100%, and trimethylarsine oxide (TMAO) 3-10%. Real samples and reference materials of seafood (DORM-1, DORM-2, TORT-2, CRM-278 and SRM-1566a) were analyzed. The analysis of DORM-1 provided an inorganic arsenic value of 124 +/- 4 ng g-1 As, dry mass (dm), which is very close to the value obtained by other authors using high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and ionic chromatography-hydride generation-atomic absorption spectrometry (IC-HG-AAS).  相似文献   

14.
Arsenic present at 1 microg L(-1) concentrations in seawater can exist as the following species: As(III), As(V), monomethylarsenic, dimethylarsenic and unknown organic compounds. The potential of the continuous flow injection hydride generation technique coupled to atomic absorption spectrometry (AAS) was investigated for the speciation of these major arsenic species in seawater. Two different techniques were used. After hydride generation and collection in a graphite tube coated with iridium, arsenic was determined by AAS. By selecting different experimental hydride generation conditions, it was possible to determine As(III), total arsenic, hydride reactive arsenic and by difference non-hydride reactive arsenic. On the other hand, by cryogenically trapping hydride reactive species on a chromatographic phase, followed by their sequential release and AAS in a heated quartz cell, inorganic As, MMA and DMA could be determined. By combining these two techniques, an experimental protocol for the speciation of As(III), As(V), MMA, DMA and nonhydride reactive arsenic species in seawater was proposed. The method was applied to seawater sampled at a Mediterranean site and at an Atlantic coastal site. Evidence for the biotransformation of arsenic in seawater was clearly shown.  相似文献   

15.
Arsenic present at 1 μg L–1 concentrations in seawater can exist as the following species: As(III), As(V), monomethylarsenic, dimethylarsenic and unknown organic compounds. The potential of the continuous flow injection hydride generation technique coupled to atomic absorption spectrometry (AAS) was investigated for the speciation of these major arsenic species in seawater. Two different techniques were used. After hydride generation and collection in a graphite tube coated with iridium, arsenic was determined by AAS. By selecting different experimental hydride generation conditions, it was possible to determine As(III), total arsenic, hydride reactive arsenic and by difference non-hydride reactive arsenic. On the other hand, by cryogenically trapping hydride reactive species on a chromatographic phase, followed by their sequential release and AAS in a heated quartz cell, inorganic As, MMA and DMA could be determined. By combining these two techniques, an experimental protocol for the speciation of As(III), As(V), MMA, DMA and non-hydride reactive arsenic species in seawater was proposed. The method was applied to seawater sampled at a Mediterranean site and at an Atlantic coastal site. Evidence for the biotransformation of arsenic in seawater was clearly shown.  相似文献   

16.
A flow-injection system for the determination of inorganic arsenic [As(III)/As(V)] and selenium species [Se(IV)/ Se(VI)] by electrochemical hydride generation, cryogenic trapping and atomic absorption spectrometry is described. A simple and robust electrochemical flow-through cell with fibrous carbon as cathodic material has been developed for the speciation of arsenic. A cold-trap system makes possible to eliminate interferences from methylated arsenic species. Without pre-reduction the system is selective to As(III) and Se(IV). The selectivity obtained with fibrous carbon as cathode material is compared to the selectivity obtained with a second electrochemical flow-through cell using a lead foil as cathode.  相似文献   

17.
A flow-injection system with electrochemical hydride generation and atomic absorption detection for As(III)/As(V) determination is described. A simple electrolytic flow-through cell has been developed and optimized. Several cathode materials like Pt, Ag, Cu, C and Pb have been tested. The influence of the electrolysis current, concentration of sulfuric acid, carrier stream, flow rate, sample volume and interferences by other metals on the arsenichydride generation have been studied. For the determination of total inorganic arsenic, As(V) is reduced to As(III) on-line by postassium iodide or L-cysteine at 95° C. The influence of the temperature and the reduction medium on this pre-reduction step has been tested. The calibration curve is linear in the range of 5 to 50 g/L for As(III) and total inorganic arsenic and shows a higher sensitivity than in case of reduction with sodium tetrahydroborate. The detection limit is 0.4 g/L for As(III) and 0.5 g/L for total inorganic arsenic at a sample volume of 1 mL.  相似文献   

18.
The speciation of As(III), As(V), MMA and DMA in marine sediments from La Coruña estuary is described. The arsenic species have been separated by ion-exchange chromatography and detected by hydride generation atomic absorption spectrometry (HGAAS). The redox potential has been determined in order to relate the concentration of arsenic species to this parameter.  相似文献   

19.
Some water and soil extracts polluted with arsenic, and a sewage sludge certified for total arsenic have been analysed by high‐performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC–ICP–MS) and hydride generation–gas chromatography– quartz furnace atomic absorption spectrometry (HG–GC–QFAAS techniques.) Detection limits in the range of 200–400 and 2–10 ng l−1 respectively allowed the determination of inorganic [As(III), As(V)] and methylated (DMA, MMA, TMAO) arsenic species present in these samples. Results obtained by both methods are well correlated overall, whatever the arsenic chemical form and concentration range (8–10 000 μg l−1). Comparison of these results enabled us to point out features and disadvantages of each analytical method and to reach a conclusion that they are suitable for arsenic speciation in these environmental matrices. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
The determination of inorganic arsenic species in ground water matrices using hydride generation coupled online to ICP-AES (HG-ICP-AES) is suggested on the fact that the As(III)-species shows significantly higher signal intensities at low sodium boron hydride (NaBH4) concentrations than the As(V)-species. The sodium boron hydride concentration used for the determination of As(III) without any considerable interferences of As(V) was at 13.2 mmol/L NaBH4 (0.05 wt/v%), whereas the concentration for the total As determination was at 158.4 mmol/L NaBH4 (0.6 wt/v%). The interferences of As(V) during the As(III) measurements were very small: at concentrations below 100 μg/L of total arsenic, the interferences of As(V) were smaller than 2%. An amount of As(III) higher than 10% of the total As amount could be determined exactly and reliably. The total amount of arsenic is measured after reducing the sample with 20 mmol/L L-cysteine (C3H7NO2S). Finally, the amount of the As(V)-species is calculated by the difference between the As(III)-species and the total arsenic. Therefore, this analytical method requires the absence of organic arsenic species, but if they still appear, they could be frozen out with liquid nitrogen after the hydride generation system. The linearity of calibration reaches from 2 μg/L up to 1000 μg/L with a detection limit routinely of about 1 μg/L for each species. The advantages of this method in comparison to AAS measurements are the higher extent of the linear calibration range (3 orders of magnitude) and a higher sensitivity. Additional merits of the method developed are easy handling and high sampling rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号