首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 This paper describes the components and operation of an experimental setup for the visualization of liquid propellant (LP) jet combustion at pressures above 100 MPa. The apparatus consists of an in-line ballistic compressor and LP injector. The ballistic compressor, based on a modified 76 mm gun, provides high-pressure (ca. 55 MPa) clear hot gas for the jet ignition. A piston (projectile) is fired toward a test chamber beyond the barrel’s end, and its rebound is arrested in a transition section that seals the test chamber to the barrel. The LP jet is injected once the piston is restrained, and combustion of the jet further elevates the pressure. At a preset pressure, a disc in the piston ruptures and the combustion gas vents sonically into the barrel. If a monopropellant is used, the jet injection-combustion process then resembles liquid rocket combustion but at very high pressures (ca. 140 MPa). This paper discusses the ballistics of the compression and compares experimental results to those predicted by a numerical model of the apparatus. Experimentally, a pressure of 70 MPa was achieved upon a 12.5 volumetric compression factor by firing a 10 kg piston into 1.04 MPa argon using a charge of 75 g of small-grain M1 propellant. Received: 16 December 1996/Accepted: 15 July 1997  相似文献   

2.
A. Abe  H. Mimura  H. Ishida  K. Yoshida 《Shock Waves》2007,17(1-2):143-151
The effect of shock pressures on the inactivation of a marine Vibrio sp. was studied experimentally and numerically. In the experiment, an aluminum impactor plate accelerated by a gas gun was used to induce shock waves in a sealed aluminum container with cell suspension liquid inside. The shock pressures in the container were measured by a piezofilm gauge. Several 10–100 MPa of pressure were measured at the shock wave front. An FEM simulation, using the Johnson–Cook model for solid aluminum and the Tait equation for the suspension liquid, was carried out in order to know the generation mechanism of shock pressures in the aluminum container. The reflection, diffraction and interaction of shock waves at the solid–liquid boundaries in the aluminum container were reasonably predicted by the numerical simulation. The changes in shock pressures obtained from the computational simulation were in good agreement with those from the experiment. The number of viable cells decreased with the increase of peak pressures of the shock waves. Peak pressures higher than 200 MPa completely inactivated the cells. At this pressure, the cell structures were deformed like the shape of red blood cells, and some proteins leaked from the cells. These results indicate that the positive and negative pressure fluctuations generated by shock waves contribute to the inactivation of the marine Vibrio sp.   相似文献   

3.
The method chosen to compensate for the forces acting on the barrel in the course of compression and confinement of the test gas in the settling chamber of a hypersonic wind tunnel with a free locking piston is justified. A method is proposed to compensate for the effect of adverse factors by optimizing the mass of an auxiliary piston introduced into the system. The effectiveness of the method is validated experimentally. As a result, for the case of gas compression to 200 MPa, the displacement of the center of mass of the barrel is reduced from 50 to 0.25 mm, which is smaller than the amplitude of elastic axial extension corresponding to the maximum pressure of the gas. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 212–220, September–October, 2008.  相似文献   

4.
This paper presents a novel experimental methodology for the study of dynamic deformation of structures under underwater impulsive loading. The experimental setup simulates fluid–structure interactions (FSI) encountered in various applications of interest. To generate impulsive loading similar to blast, a specially designed flyer plate impact experiment was designed and implemented. The design is based on scaling analysis to achieve a laboratory scale apparatus that can capture essential features in the deformation and failure of large scale naval structures. In the FSI setup, a water chamber made of a steel tube is incorporated into a gas gun apparatus. A scaled structure is fixed at one end of the steel tube and a water piston seals the other end. A flyer plate impacts the water piston and produces an exponentially decaying pressure history in lieu of explosive detonation. The pressure induced by the flyer plate propagates and imposes an impulse to the structure (panel specimen), which response elicits bubble formation and water cavitations. Calibration experiments and numerical simulations proved the experimental setup to be functional. A 304 stainless steel monolithic plate was tested and analyzed to assess its dynamic deformation behavior under impulsive loading. The experimental diagnostic included measurements of flyer impact velocity, pressure wave history in the water, and full deformation fields by means of shadow moiré and high speed photography.  相似文献   

5.
Nonlinear gas oscillations in a closed tube driven by the aperiodic motions of a piston as a result of the action of the external and internal pressure drop are studied. The external pressure takes two values alternating at the moment of change of direction of motion of the piston. Two models of the motion of the gas are considered. Model 1 is formed by a system of equations representing the mass, momentum, and entropy conservation laws. As distinct from model 1, model 2 includes the total energy conservation law in place of the entropy conservation laws. Kazan’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 134–142, March–April, 1998. The work was carried out with partial support from the Russian Foundation for Fundamental Research (project No. 96-01-00484).  相似文献   

6.
Shock tube study of n-decane ignition at low pressures   总被引:1,自引:0,他引:1  
Ignition delay times for n-decane/O 2 /Ar mixtures were measured behind reflected shock waves using endwall pressure and CH* emission measurements in a heated shock tube. The initial postshock conditions cover pressures of 0.09-0.26 MPa, temperatures of 1 227-1 536 K, and oxygen mole fractions of 3.9%-20.7% with an equivalence ratio of 1.0. The correlation formula of ignition delay dependence on pressure, temperature, and oxygen mole fraction was obtained. The current data are in good agreement with available low-pressure experimental data, and they are then compared with the prediction of a kinetic mechanism. The current measurements extend the kinetic modeling targets for the n-decane combustion at low pressures.  相似文献   

7.
Radial oscillations of a gas bubble in a large spherical flask filled with a fluid are considered. We derive an equation of the change of the bubble radius by the known law of pressure variation at the boundary of the liquid volume (the law of motion of the piston) for a period of time during which, repeatedly reflected from the piston, the leading front of the reflected-from-the bubble perturbations reaches the bubble. For further calculations of the change of the bubble radius, recurrent relations which include the wave reflected from the bubble in the previous cycle and its subsequent reflection from the piston are obtained. Under harmonic action of the piston on the fluid-bubble system, a certain periodic regime with a package of bubble oscillations is established. Institute of Mechanics, Ural Scientific Center, Russian Academy of Sciences, Ufa 450000. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 5, pp. 77–87, September–October, 1998.  相似文献   

8.
A mathematical model for a projectile shot at low pressures in the space behind the projectile space is developed. The pressure rise is limited because of the nonsimultaneity of propellant ignition and combustion and the discharge of the propellant combustion products through the gap between the projectile and the walls of the gun barrel. The kinetic characteristics of flame propagation over the propellant particles are determined. A comparison of calculation and experimental data is performed. The calculation results are used in designing 2A85 self-propelled launchers and upgrading 2A30 self-propelled launchers. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 6, pp. 44–49, November–December, 2007.  相似文献   

9.
 The design and performance of a new pulse-expansion wave tube for nucleation studies at high pressures are described. The pulse-expansion wave tube is a special shock tube in which a nucleation pulse is formed at the endwall of the high pressure section. The nucleation pulse is due to reflections of the initial shock wave at a local widening situated in the low pressure section at a short distance from the diaphragm. The nucleation pulse has a duration of the order of 200 μs, while nucleation pressures that can be achieved range from 1 to 50 bar total pressure. Droplet size and droplet number density can accurately be determined by a 90°-Mie light scattering method and a light extinction method. The range of nucleation rates that can be measured is 108 cm-3 s-1<J<1011 cm-3 s-1. We will illustrate the functioning and possibilities of the new pulse-expansion wave tube by nucleation rate measurements in the gas-vapour mixture nitrogen/water in the temperature range 200–260 K, and in the mixture methane/n-nonane as a function of supersaturation S at various total pressures up to 40 bar and temperatures around 240 K. Received: 5 June 1996/Accepted: 9 December 1996  相似文献   

10.
This paper considers the interaction between an absolutely rigid wall or a steel plate and the rarefaction wave arising in solid deuterium when a 30–150 GPa shock wave arrives at the free surface. It is shown that, in the entropy trace near the wall or interface with the plate, a high-temperature plasma arises, in which a thermonuclear fusion is possible, at least, for shock-wave pressures above 70 GPa. The dimension of the plasma region and the time of its establishment are proportional to the distance between the free surface and the wall. Estimates of the proportionality coefficients are given. It is noted that, in this case, unlike in other methods of high-temperature plasma generation, the time of existence of the plasma may not depend on the sound velocity in it. It is shown that, by using a conical solid-state target wit an exit hole, the shock-wave pressure in solid deuterium can be increased from 10 to 100 GPa. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 15–24, May–June, 2009.  相似文献   

11.
The objective of this work is to observe the effects of friction factors for the stepped labyrinth seals. The gas flow through the seals creates net pressure and shear forces acting on the rotor. It is necessary to predict these forces for reliably operating turbomachinery. So we investigated the effect of shear forces on the calculation of rotordynamic coefficients by comparing the results in the case shear forces are considered and in the case they are neglected. We also compared our results, obtained with the Colebrook–White friction factor model, with some reference experimental and computational results.  相似文献   

12.
13.
A single piston capillary rheometer was modified by the addition of a second chamber with a restricting valve (developed at the Polymer Centre, Zlín, Czech Republic), which provides backpressure and increasing the pressure in the melted material during the flow through the die. The Carreau–Yasuda model was employed to fit the measured viscosity data and determine the temperature and pressure coefficients for polyolefin based binder and its compounds with carbide powder. Both temperature and pressure sensitivity coefficients are largely dependent on the structure of a polymer, which should be taken into account for binder-formation’s development. Increasing the loading level of the powder in the compound diminishes the pressure sensitivity of their flow properties.  相似文献   

14.
Liquid drop impacts on a smooth surface were studied at elevated chamber pressures to characterize the effect of gas pressure on drop spreading and splashing. Five common liquids were tested at impact speeds between 1.0 and 3.5 m/s and pressure up to 12 bars. Based on experiments at atmospheric pressure, a modification to the “free spreading” model (Scheller and Bousfield in AIChE Paper 41(6):1357–1367, 1995) has been proposed that improves the prediction accuracy of maximum spread factors from an error of 15–5%. At high chamber pressures, drop spreading and maximum spread factor were found to be independent of pressure. The splash ratio (Xu et al. in Phys Rev Lett 94:184505, 2005) showed a non-constant behavior, and a power-law model was demonstrated to predict the increase in splash ratio with decreasing impact speed in the low impact speed regime. Also, drop shape was found to affect splash promotion or suppression for an asymmetry greater than 7–8% of the equivalent drop diameter. The observations of the current work could be especially useful for the study of formation of deposits and wall combustion in engine cylinders.  相似文献   

15.
Visualization of a confined accelerated bubble   总被引:1,自引:0,他引:1  
F.K. Lu  X. Zhang 《Shock Waves》1999,9(5):333-339
High-speed photography was used to study the collapse of a confined two-dimensional, air cavity in water, subjected to a propagating pressure disturbance. The 5–6 mm diameter cavity was confined in a rectangular duct. A sustained pressure disturbance was created by an accelerating piston in contact with the water 240 mm away from the bubble. The pressure increased from 0.1 MPa to about 0.12 MPa with a rise time of the order of 2 ms. The pressure pulse was not reflected until its arrival at the end of the duct, 320 mm from the piston. A microjet was produced at the proximal wall which penetrated the distal cavity wall, thereby producing a pair of bubbles which was thought to be regions of intense vorticity. The features of such confined bubble collapse were not found in previous investigations of unconfined bubble accelerations by weak pressure disturbances. Confinement apparently intensified the effect of the disturbance significantly. Received 18 August 1998 / Accepted 12 May 1999  相似文献   

16.
A series of triaxial compression experiments were preformed for the coarse marble samples under different loading paths by the rock mechanics servo-controlled testing system. Based on the experimental results of complete stress-strain curves, the influence of loading path on the strength and deformation failure behavior of coarse marble is made a detailed analysis. Three loading paths (Paths I–III) are put forward to confirm the strength parameters (cohesion and internal friction angle) of coarse marble in accordance with linear Mohr-Coulomb criterion. Compared among the strength parameters, two loading paths (i.e. Path II by stepping up the confining pressure and Path III by reducing the confining pressure after peak strength) are suggested to confirm the triaxial strengths of rock under different confining pressures by only one sample, which is very applicable for a kind of rock that has obvious plastic and ductile deformation behavior (e.g. marble, chalk, mudstone, etc.). In order to investigate re-fracture mechanical behavior of rock material, three loading paths (Paths IV–VI) are also put forward for flawed coarse marble. The peak strength and deformation failure mode of flawed coarse marble are found depending on the loading paths (Paths IV–VI). Under lower confining pressures, the peak strength and Young’s modulus of damage sample (compressed until post-peak stress under higher confining pressure) are all lower compared with that of flawed sample; moreover mechanical parameter of damage sample is lower for the larger compressed post-peak plastic deformation of coarse marble. However under higher confining pressures (e.g. σ 3 = 30 MPa), the axial supporting capacity and elastic modulus of damage coarse marble (compressed until post-peak stress under lower confining pressure) is not related to the loading path, while the deformation modulus and peak strain of damage sample depend on the difference of initial confining pressure and post-peak plastic deformation. The friction among crystal grains determines the strength behavior of flawed coarse marble under various loading paths. In the end, the effect of loading path on failure mode of intact and flawed coarse marble is also investigated. The present research provides increased understanding of the fundamental nature of rock failure under different loading paths.  相似文献   

17.
The pressure coefficient of viscosity of poly(α-methylstyrene-co-acrylonitrile) was measured using a high-pressure sliding plate rheometer (HPSPR) and two types of capillary rheometer: a piston-driven device with a throttle at the exit [piston capillary rheometer with throttle (PCRWT)] operated at a fixed flow rate, and a counter-pressure nitrogen capillary rheometer (CPNCR) operated at a fixed pressure drop. In the HPSPR, the pressure, shear rate, density, and viscosity are all uniform throughout the sample, while the analysis of capillary data is complicated by the axial pressure gradient and the radial shear rate gradient. The polymer was found to be piezorheologically simple, and the HPSPR data indicated that the pressure coefficient of viscosity β ≡ dln(a P)/dP decreased slightly with increasing pressure at high pressure. While β from PCRWT data from different laboratories and instruments agreed fairly well, the β values were on average about 2/3 of that from the HPSPR. The CPNCR yields β about 18% lower than that of the HPSPR.  相似文献   

18.
Transportation and consumption of petroleum products around the world have created a potential risk for oil spills in the environment. Knowledge of high-pressure rheological behaviour of heavy crude oil fractions, which are usually transported in oil tankers, is very important to design deep recovering operations of the oil remaining in the tanks after an accident. The effect of pressure on the viscosity of these materials is not well understood, this is mainly due to experimental constraints involving high-pressure rheology measurements at low shear rates. Consequently, the overall objective of this work is to model the temperature–pressure–viscosity dependence of a selected heavy fuel oil in a wide range of pressure and temperature. With this aim, viscous flow tests at different temperatures and differential pressures and modulated differential scanning calorimetry tests were carried out on the heavy fuel oil selected. A temperature–pressure–viscosity model (FMT model) fits fairly well the experimental results obtained in the whole differential pressure range studied. However, viscosity values at temperatures lower than 10°C cannot be predicted due to microstructural changes associated with the solidification process of the heaviest components of the fuel oil tested.Paper presented at the European Rheology Conference (AERC) held in Grenoble, France, April 21–23, 2005.  相似文献   

19.
The energy and force characteristics of periodic internal wave beams in a viscous exponentially stratified fluid are analyzed. The exact solutions of linearized problems of generation obtained by integral transformations describe not only three-dimensional internal waves but also the associated boundary layers of two types. The solutions not containing empirical parameters are brought to a form that allows a direct comparison with experimental data for generators of various types (friction, piston, and combined) of rectangular or elliptic shape. The stress tensor and force components acting on the generator are given in quadratures. In the limiting cases, the solutions are uniformly transformed to the corresponding expressions for the problems in a two-dimensional formulation. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 12–23, May–June, 2006  相似文献   

20.
The specific features of calculation of a gas in a spherical bubble located in the center of a spherical volume of weakly compressible fluid are considered. The problems of motion of a cold gas to a point and a spherical piston converging to a point are used to evaluate the algorithm. It is shown that significant errors can arise in calculation of spherical waves in the vicinity of the pole. These errors can be substantially reduced by means of artificial viscosity in the Riemann problem. Institute of Mechanics and Machine Building, Kazan’ Scientific Center, Russian Academy of Sciences, Kazan’ 420111. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 2, pp. 101–110, March–April, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号