首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Novel Fluid Structure Interaction Experiment to Investigate Deformation of Structural Elements Subjected to Impulsive Loading
Authors:H D Espinosa  S Lee  N Moldovan
Institution:(1) Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3111, USA
Abstract:This paper presents a novel experimental methodology for the study of dynamic deformation of structures under underwater impulsive loading. The experimental setup simulates fluid–structure interactions (FSI) encountered in various applications of interest. To generate impulsive loading similar to blast, a specially designed flyer plate impact experiment was designed and implemented. The design is based on scaling analysis to achieve a laboratory scale apparatus that can capture essential features in the deformation and failure of large scale naval structures. In the FSI setup, a water chamber made of a steel tube is incorporated into a gas gun apparatus. A scaled structure is fixed at one end of the steel tube and a water piston seals the other end. A flyer plate impacts the water piston and produces an exponentially decaying pressure history in lieu of explosive detonation. The pressure induced by the flyer plate propagates and imposes an impulse to the structure (panel specimen), which response elicits bubble formation and water cavitations. Calibration experiments and numerical simulations proved the experimental setup to be functional. A 304 stainless steel monolithic plate was tested and analyzed to assess its dynamic deformation behavior under impulsive loading. The experimental diagnostic included measurements of flyer impact velocity, pressure wave history in the water, and full deformation fields by means of shadow moiré and high speed photography.
Keywords:Fluid–  structure interaction  Underwater impulsive loading  Dynamic structural deformation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号