首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
我们通过包覆炭化的方法制备得到了石墨烯包覆的天然球形石墨(G/SG)材料,并使用扫描电子显微镜、X射线衍射仪以及多种电化学测试手段考察了不同石墨烯含量的复合材料的形貌结构及电化学性能。我们发现,在不添加乙炔黑(AB)的情况下,G/SG复合材料表现出较高的首次库伦效率,很好的循环稳定性和高倍率性能。当石墨烯包覆量为1%时,材料50次循环后的可逆容量可与添加10%AB的天然石墨电极(SG)等同;当石墨烯包覆量为2.5%时,材料的比容量完全高于添加10%AB的石墨电极。材料电化学性能的改善归因于石墨烯的包覆。一方面,石墨烯的柔软可变性可以保证天然石墨颗粒在充放电过程中的结构完整性,从而有效改善材料的循环稳定性;另一方面,石墨烯的存在提高了电极的导电性,促进更好导电网络的形成。因此,石墨烯包覆天然球形石墨材料中,石墨烯不仅是活性物质,也发挥导电剂的作用。当添加5%的乙炔黑时,在50 mA·g-1电流循环50次后,5%G/SG电极的可逆容量从381.1 mAh·g-1提高到404.5 mAh·g-1,在1 A·g-1电流时可逆容量从82.5 mAh·g-1提高到101.9 mAh·g-1,这表明G/SG电极仍然需要乙炔黑导电剂。乙炔黑颗粒填充在复合材料的空隙中,通过点接触的形式连接到G/SG颗粒,与石墨烯协同作用形成了更加有效的导电网络。尽管石墨烯包覆和乙炔黑添加对天然石墨电极具有积极的影响,例如增加了天然石墨电极的导电性和储锂性能(包括可逆容量,倍率性能和循环性能),但随着石墨烯或乙炔黑的增加,电极密度通常会降低。因此,在实际应用中应考虑石墨负极材料的质量和体积容量的平衡。这些结果对天然石墨的进一步商业应用具有重要意义。我们的工作为天然石墨电极在锂电池中的电化学行为提供了一种新的认识,并且有助于制备更高性能的负极材料。  相似文献   

2.
采用静电纺丝技术制备出CaSnO3纳米纤维(CaSnO3 NFs)并作为模板,再经表面原位聚合酚醛树脂和碳化处理制得碳包覆CaSnO3纳米纤维(CaSnO3@C NFs)。使用X射线衍射、扫描电子显微镜、透射电子显微镜和X射线光电子能谱对材料的物相组成、形貌和微观结构进行了表征,通过循环伏安、恒电流充放电和交流阻抗谱研究了碳包覆及碳化温度对CaSnO3 NFs负极材料电化学性能的影响。结果显示,碳包覆改性使CaSnO3 NFs的电化学性能得到较大程度的提高,而且随着碳化温度的升高,CaSnO3@C NFs复合电极的比容量先增加后下降,600℃碳化获得的CaSnO3@C NFs?600复合材料具有最好的电化学性能。在0.1 A·g-1的电流密度下,CaSnO3@C NFs?600电极的首圈放电比容量达到1102.2 mAh·g-1,充放电循环100圈后比容量为548.8 mAh·g-1,当电流密度提高到2 A·g-1时,其比容量仍保持在333.5 mAh·g-1。  相似文献   

3.
锂离子电池Sn负极材料有较高的比容量,但其容量随周期循环急剧衰减. 若Sn与Sb形成SnSb合金可以改善其循环性能. 本文采用有机液相还原方法制备了球形Sn-SnSb合金纳米粒子,其首周期循环充电容量1235.9 mAh·g-1,放电容量为785.9 mAh·g-1,经过50周的循环之后其放电容量保持在409.2 mAh·g-1,表现出较好的循环性能.  相似文献   

4.
新型多孔碳纳米片/碳纳米管(PC/CNT)材料表现出丰富的分级孔隙结构,具有较高的氧化锡(SnO2)负载量。通过PC和CNT交联形成的三维结构能够有效地提高锂离子传输速率和电子的传导。此外,在电极中掺杂的氟化锂(LiF)不仅能够降低SnO2-PC/CNT-LiF电极的电荷转移电阻,而且还能补充SEI膜形成时消耗的Li+,降低不可逆容量,增强SEI膜的稳定性。研究表明,SnO2-PC/CNT-LiF电极在电流密度为100 mA·g-1时,首次可逆比容量达到1642.98 mAh·g-1,活性物质的利用率高达90.12%,循环100次后,放电比容量仍然达到745.11 mAh·g-1,且库仑效率仍然保持在95.1%以上,显示出优异的倍率和循环性能。  相似文献   

5.
采用固相法合成掺杂镁和铝尖晶石LiCoMnO4材料,研究镁和铝掺杂量对尖晶石LiCoMnO4电极的初始容量、放电平台以及循环性能的影响. 利用扫描电子显微镜、粉末X-射线衍射仪观察分析材料形貌及结构. 结果表明,所合成材料的粒径分布均匀,结晶性较佳. LiCoMnO4电极初始容量为87.0 mAh.g-1,少量镁或铝掺杂使电极初始容量有所增加,LiCo0.98Mg0.02MnO4和LiCo0.98Al0.02MnO4电极初始容量分别为91.3和93.6 mAh.g-1,提高了其5 V放电平台的比例,过量掺杂则其容量降低. 此外,掺杂Al显著改善了LiCoMnO4电极的循环性能,而掺杂镁对电极的循环性能其影响不明显.  相似文献   

6.
徐嘉  王艳艳  王蕊  王博  潘越  曹殿学  王贵领 《电化学》2013,19(2):189-192
本文以壳聚糖单体为碳源兼凝胶剂,利用溶胶-凝胶煅烧合成了锂离子电池LiFePO4/C正极材料,使用XRD和SEM对合成的材料进行表征. 用恒电流充放电测试了LiFePO4/C电极的电化学性能,当壳聚糖单体与LiFePO4摩尔比为1:1.2时,600 oC煅烧的LiFePO4/C电极性能最佳,其粒径分布均匀(200 ~ 400 nm),该电极0.2C倍率放电比容量为155 mAh.g-1,30周期循环放电比容量仍保持152 mAh.g-1,库仑效率为97.9 %.  相似文献   

7.
通过球磨混合及聚乙二醇(PEG)包覆处理制备含有高模量碳纤维(HMCF)的硫基复合材料.采用X射线衍射(XRD)和扫描电子显微镜(SEM)测定材料的结构和形貌,采用X-光电子扫描能谱(XPS)验证了PEG包覆在材料的表面,较系统地研究了PEG含量对含有高模量碳纤维的硫正极比容量、循环稳定性和倍率性能等性能的影响.结果表明:和常用的导电剂乙炔黑(AB)相比,HMCF导电剂具有结晶度高,接触角小,吸液性能好等优点.当PEG涂层量为1.09%时,硫正极初始放电容量为1312.5 mAh·g-1,在电流密度为200 mA·g-1充放电时,50次循环以后可逆容量保持为650 mAh·g-1,和没有PEG涂层相比,循环稳定性提高了39.9%.  相似文献   

8.
以金属氧化物和蔗糖为原料,经混合球磨,高温碳热还原制备Sn-Co-M-C(M = Zn, Fe)复合负极材料. 采用XRD、SEM测试样品结构、观察样品形貌. 电化学性能测试表明,Sn-Co-Zn-C电极其首次嵌锂比容量571 mAh.g-1,45次循环后其比容量369 mAh.g-1,其比容量、循环寿命好.  相似文献   

9.
以氧化镁/三聚氰胺/聚乙二醇混合物为初始原料,通过模板辅助的方法成功地制备了高储锂性能的氮掺杂多孔炭片(NPCSs).采用红外光谱(FTIR)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、循环伏安(CV)、恒流充放电(GCD)和交流阻抗(EIS)对样品进行了详细地表征和分析.结果显示:NPCSs为交错连接的多孔炭片网络,并显示出较高的比表面积(370.8 m2·g-1)、多级的孔道和高的氮含量(8.5 at%).这种连续多孔的结构,有利于电子在三维方向的传输,缩短了锂离子扩散的距离,扩大了锂离子与电极的接触面积,也为锂离子的储存提供了有利场所.此外,高的氮掺杂水平为锂离子的嵌入和脱出提供了大量的活性位点,增强了材料的导电性.基于此独特的结构,NPCSs电极显示了高的首次可逆比容量(电流密度为100 mA·g-1时,扣除乙炔黑贡献后的比容量为914 mAh·g-1)和较好的循环稳定性(电流密度为1000 mA·g-1,循环至300圈,仍保留523 mAh·g-1的比容量).而且,该材料显示出较高的倍率性能,在电流密度为3000 mA·g-1时的可逆比容量达到355 mAh·g-1.因此,所获得的NPCSs有望成为锂离子电池负极材料.  相似文献   

10.
近年来,由于锂资源逐渐紧缺而导致其成本增加,锂离子电池发展受到了限制. 作为一个有潜力的替代者,有着相似电化学机制且成本较低的钠离子电池则发展迅速. 但由于钠离子与锂离子相较有着更大半径,在钠离子脱嵌过程中,对大多数电极材料的晶体结构破坏严重. 因此,开发新型电极材料对钠离子电池的进一步发展尤为重要. 其中,层状钒氧化物作为正极材料被广泛研究. 在这项工作中,作者基于钒氧化物,引入钼元素并与碳复合,首次设计合成了一种新型的碳复合钼掺杂的钒氧化物纳米线电极材料,并获得了优良的电化学性能(在50 mA•g-1的电流密度下,最高放电比容量达135.9 mAh•g-1,并在循环75次后仍有82.6mAh•g-1的可逆容量,容量保持率高达71.8%;在1000mA•g-1的高电流密度下循环并回到50mA•g-1后,可逆放电比容量仍能回复至111.5mAh•g-1). 本工作的研究结果证明,这种具有超大层间距的新型碳复合钼掺杂的钒氧化物纳米线是一种非常有潜力的储钠材料,并且我们的工作为钠离子电池的进一步发展提供了一定的理论基础.  相似文献   

11.
Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow SnO2@C nanoparticles (NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach. The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries (LIBs), the as-prepared hollow SnO2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 mAh g-1, and the current density is 3910 mA g-1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 mAh g-1 at the rate performances in which the current density is recovered to 156.4 mA g-1(0.2 C). Undoubtedly, sub-100 nm SnO2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs.  相似文献   

12.
采用酸浸蚀Al-Si合金的方法制备了多孔纳米Si,并用其制作以石墨烯为导电材料的石墨烯/多孔纳米Si负极. SEM和TEM的分析表明两者混合均匀. 作为锂离子电池的负极,该电极在1 mol•L-1 LiPF6/EC(碳酸乙烯酯):DMC(碳酸二甲酯) = 1:1(by volume) + 1.5%(by mass)VC(碳酸亚乙烯酯)溶液中、0.5 A•g-1电流密度下,第120周循环的放电比容量为1842.6 mAh•g-1,充放电效率为98.6%. 石墨烯的加入不仅提高了电极的导电性,而且减缓了充放电过程中电极多孔纳米结构的衰变.  相似文献   

13.
李雪  龚正良 《电化学》2020,26(3):338
锂硫电池由于具有高的理论比能量引起了广泛关注,然而传统液态锂硫电池由于多硫化物的“穿梭效应”以及安全问题而限制了其应用,全固态锂硫电池可显著提高电池安全性能并有望解决多硫化物的穿梭问题. 本文采用传统的溶液浇铸法制备了具有不同的[EO]/[Li+]的PEO-LiTFSI聚合物电解质,并将其应用于锂硫电池. 研究发现,虽然[EO]/[Li+] = 8的聚合物电解质具有更高的离子电导率,但是[EO]/[Li+] = 20的电解质与金属锂负极间的界面阻抗更低,界面稳定性更好. Li|PEO-LiTFSI([EO]/[Li+]=20)|Li对称电池在60 °C,电流密度为0.1 mA·cm-2时可稳定循环超过300 h,而Li|PEO-LiTFSI ([EO]/[Li+]=8)|Li对称电池循环75 h就出现了短路现象. 基于PEO-LiTFSI([EO]/[Li+]=20)电解质的锂硫电池首圈放电比容量为934 mAh·g-1,循环16圈后放电比容量为917 mAh·g-1以上. 而基于PEO-LiTFSI ([EO]/[Li+]=8)电解质的锂硫电池,由于与锂负极较低的界面稳定性不能够正常循环,首圈就出现了严重过充现象.  相似文献   

14.
Spherical Li-rich lithium manganese oxide(LMO) spinel material was synthesized by an ion implanted method assisted by polyalcohol doped with Niobium and Phosphate simultaneously.The material was characterized by scanning electron microscopy,X-ray diffraction and BET specific surface area analysis.The electrochemical performances were investigated with galvanostatic techniques and cyclic voltammetry.The synthesis process was investigated with TG/DSC.The results show that the lithium ion can be immersed into the pore of manganese dioxide at a low temperature with the ion implanted method.The prepared materials have a higher discharge capacity and better crystallization than those prepared by solid phase method.The doped Nb can improve the capacity of the Li-rich LMO spinel and reinforce the crystal growth along(111) and(400) planes.The crystal grains show circular and smooth morphology,which makes the specific surface area greatly decreased.Phosphate-doped LMO spinel exhibits good high-rate capacity and structure stability.The prepared Li_(1.09)Mn_(1.87)Nb_(0.031)O_(3.99)(PO_4)_(0.021)delivers a discharge capacity of 119mAhg~(-1) at 0.2C(1C=148mAg~(-1)) and 112.8 mAhg~(-1) at 10 C,the discharge capacity retention reaches 98% at 1 ℃ after 50 cycles at 25 ℃ and 94% at 55 ℃.  相似文献   

15.
Nb2O5/C nanosheets are successfully prepared through a mixing process and followed by heating treatment.Such Nb2O5/C based electrode exhibits high rate performance and remarkable cycling ability, showing a high and stable specific capacity of ~380 mAh g-1 at the current density of 50 mA g-1(much higher than the theoretical capacity of Nb2O5).Further more,at a current density of 500 mA g-1,the nanocomposites electrode still exhibits a specific capacity of above 150 mAh g-1 after 100 cycles.These results suggest the Nb2O5/C nanocomposite is a high performance anode material for lithium-ion batteries.  相似文献   

16.
张光辉  沈培康  桑革  熊仁金 《电化学》2013,19(2):184-188
通过球磨及高温固相法制得了Si/C复合材料,并氧化合成聚苯胺包覆于硅碳复合材料的表面. 采用XRD、SEM、红外和热重分析观察复合材料形貌、分析样品结构,循环伏安法和充放电测试表征PAni/Si/G/C电极电化学性能. 结果表明,PAni/Si/C复合材料表面覆盖了较为完整的片层状结构的聚苯胺膜,可逆容量高达784 mAh.g-1,50次周期循环后,嵌锂容量保持在690 mAh?g-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号