首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 760 毫秒
1.
The rhodium-catalyzed hydrogenation reaction of enamides is studied computationally using the B3LYP/LACVP** level of theory for a range of ligands and substrates. Two model bidentate phosphine ligands, 1,2-bis(dimethylphosphino)ethane (DMPE) and (Z)-1,2-bis(dimethylphosphino) ethene (ZDMP), and two chiral bidentate phosphine ligands, (R,R)-MeDuPHOS and (R,R)-tetramethylbisoxaphospinane (TMBOP), are investigated in the hydrogenation of alpha-formamidoacrylonitrile as a model substrate. The ZDMP ligand is then studied for three additional substrates: N-(2-propenyl)formamide, (Z)-3-formamido-2-butenenitrile, and (E)-3-formamido-2-butenenitrile. The potential-energy surfaces calculated for the four ligands and alpha-formamidoacrylonitrile are in general agreement with previous computational studies using QM/MM (ONIOM) methods but show consistently higher relative barriers rather than lower. The calculated potential-energy surfaces of hydrogenations of various substrates with a common ligand indicate a mechanistic change based on substrate. The sequence of hydrogen transfer to the two olefinic carbons is calculated to change based on substrate electronics. This has a significant impact on the origins of enantioselectivity for such varied substrates as the first hydride transfer to the substrate is calculated to be irreversible for all substrates, independent of whether it occurs at the alpha or beta carbon of the olefin.  相似文献   

2.
Very stable suspensions of small sized (c.a. 1.2 nm) and homogeneously dispersed ruthenium nanoparticles (RuNPs) were obtained by decomposition, under H(2), of (η(4)-1,5-cyclooctadiene)(η(6)-1,3,5-cyclooctatriene)ruthenium(0), [Ru(COD)(COT)], in various imidazolium derived ionic liquids (ILs: [RMIm][NTf(2)] (R = C(n)H(2n+1) where n = 2; 4; 6; 8; 10) and in the presence of amines as ligands (1-octylamine, 1-hexadecylamine). These nanoparticles were compared to others stabilized either in pure ILs or by the same ligands in THF. NMR experiments ((13)C solution and DOSY) demonstrate that the amines are coordinated to the surface of the RuNPs. These RuNPs were investigated for the hydrogenation of aromatics and have shown a high level of recyclability (up to 10 cycles) with neither loss of activity nor significant agglomeration.  相似文献   

3.
胡向平 《分子催化》2011,(6):485-488
将BoPhoz类膦-氨基膦配体应用在Rh-催化β-脱氢氨基酸酯的不对称氢化反应中,考察了配体结构及反应条件对反应结果的影响,并在优化的条件下研究了各种底物的适用范围,产物的对映选择性达81%ee.  相似文献   

4.
A library of 19 binol-derived chiral monophosphites that contain a phthalic acid diamide group (PhthalaPhos) has been designed and synthesized in four steps. These new ligands were screened in the rhodium-catalyzed enantioselective hydrogenation of prochiral dehydroamino esters and enamides. Several members of the library showed excellent enantioselectivity with methyl 2-acetamido acrylate (6 ligands gave >97% ee), methyl (Z)-2-acetamido cinnamate (6 ligands gave >94% ee), and N-(1-phenylvinyl)acetamide (9 ligands gave >95% ee), whilst only a few representatives afforded high enantioselectivities for challenging and industrially relevant substrates N-(3,4-dihydronaphthalen-1-yl)-acetamide (96% ee in one case) and methyl (E)-2-(acetamidomethyl)-3-phenylacrylate (99% ee in one case). In most cases, the new ligands were more active and more stereoselective than their structurally related monodentate phosphites (which are devoid of functional groups that are capable of hydrogen-bonding interactions). Control experiments and kinetic studies were carried out that allowed us to demonstrate that hydrogen-bonding interactions involving the diamide group of the PhthalaPhos ligands strongly contribute to their outstanding catalytic properties. Computational studies carried out on a rhodium precatalyst and on a conceivable intermediate in the hydrogenation catalytic cycle shed some light on the role played by hydrogen bonding, which is likely to act in a substrate-orientation effect.  相似文献   

5.
A highly enantioselective rhodium-catalyzed hydrogenation of both (Z)- and (E)-β-arylenamides was developed by using monodentate chiral spiro phosphite and phosphine ligands, respectively. The hydrogenation reaction provides an efficient access to optically active β-arylisopropylamines, important building blocks for the synthesis of biologically active compounds.  相似文献   

6.
 报道了对烷氧基取代的 MeO-BIPHEP 型手性双膦配体钌配合物催化的β-酮酸酯不对称加氢反应, 考察了反应温度、压力、底物/催化剂摩尔比和溶剂对反应的影响. 结果表明, 在乙醇中该配合物催化 3-丁酮酸乙酯加氢反应的对映选择性达 98.0%,且对含不同取代基的β-酮酸酯均表现出较高的活性和对映选择性.  相似文献   

7.
[reaction: see text] A new class of chiral phosphine-oxazoline ligands have been developed. Chiral Ir complexes prepared from these ligands induced high enantioselectivities (66-90% ee) when applied to the asymmetric hydrogenation of acyclic aromatic N-arylimines.  相似文献   

8.
A series of phosphine ligands with different electronic and steric properties were evaluated at fully modified conditions in cobalt catalysed hydroformylation of 1-octene. The steric demand of the ligands was based on the Tolman cone angle model covering a range of 132-175°. The electron donating ability was evaluated through the first order Se-P coupling constants as determined from the corresponding phosphine selenides covering a range of 672-752 Hz. Crystal structures of three phosphine modified cobalt dimers, [Co(CO)(3)(L)](2) (L = PA-C(5), PCy(3) and PCyp(3) with PA-C(5) = 1,3,5,7-tetramethyl-8-pentyl-2,4,6-trioxa-8-phosphatricyclo[3.3.1.1(3,7)]decane), are reported. The Phoban and Lim ligands (Phoban = mixture of 9-phosphabicyclo[3.3.1 and 4.2.1]nonane, Lim = 4,8-dimethyl-2-phosphabicyclo[3.3.1]nonane) resulted in systems about twice as active as most of the other ligands investigated, these ligands have a high Lewis basicity with (1)J(Se-P) values from 684-687 Hz. The linearity of the alcohol product in general decreased for the less electron donating ligands while no clear relationship was evident as a function of steric size. The parallel competing hydrogenation of 1-octene to octane varied from 9-15% for a cone angle range of 132-172°, but a sharp increase of up to 40% was observed for PA-C(5), PCy(3) and PCyp(3), all with cone angles > 169°. The catalytic behaviour provides evidence that is contrary to the dissociative substitution of CO by an alkene as the rate limiting step in all cases. For large symmetrical ligands, such as PA-C(5), PCy(3) and PCyp(3) the rate limiting step may move within the catalytic cycle and may now be situated at the carbonylation step where the chemoselectivity is also determined. The lack of clear correlation between the steric and electronic effect of the ligands and all catalytic parameters may serve as additional proof that the same system, especially in terms of the rate determining step, is not operative in all cases. The Phoban and Lim systems are superior with the highest reactivity and lowest alkene loss through hydrogenation. The unsymmetrical nature of the Phoban and Lim ligands may provide flexibility to adopt geometries inducing both high and low steric crowding, which may be a reason for its beneficial catalytic properties.  相似文献   

9.
New modular P-chiral ligands have been prepared from commercially available (S)-α,α-diphenylprolinol. With these new types of ligands, up to 95% ee was achieved in the Rh-catalyzed asymmetric hydrogenation of functionalized olefins.  相似文献   

10.
《Tetrahedron: Asymmetry》2005,16(20):3416-3426
A group of 10 (mono- or bis-) α-chiral mono phosphine ligands was synthesized from enantiopure phosphepine sulfide 3 by one or two subsequential highly diastereoselective α-deprotonation/alkylation steps, followed by desulfuration with Raney nickel. Their relative configuration was determined by X-ray crystal structure analysis. The new monophosphine ligands were tested in asymmetric hydrogenation, hydroboration, and Suzuki–Miyaura coupling showing asymmetric inductions up to 91% ee. In the case of hydrogenation, clear evidence was found that enantioselectivity is substantially controlled through α-C chirality rather than through biaryl chirality, which was demonstrated by a change of the sense of asymmetric induction upon change of substituents.  相似文献   

11.
The novel complexes 4a and b have been synthesized by complexation of Ru(II) with the tridentate ligands Ph2P-(CH2)n-P(Ph)-(CH2)2-Cp (n = 3,4). 4b, compared with other Ru(II) phosphane complexes, showed superior capacity as hydrogenation catalyst.  相似文献   

12.
《Tetrahedron: Asymmetry》2007,18(15):1877-1882
Cationic iridium complexes based on enantiomerically pure tetrathiafulvalene–oxazoline ligands have been used in the asymmetric hydrogenation of N-(phenylethylidene)aniline. Complete conversions with ee’s up to 68% could be reached in the case of the TTF–phosphinooxazoline (TTF–PHOX) ligands.  相似文献   

13.
Chiral mixed phosphorus/sulfur ligands 1-3 have been shown to be effective in enantioselective Rh-catalyzed dehydroamino acid hydrogenation and ketone hydrosilylation reactions (eqs 1, 2). After assaying the influence of the substituents at sulfur, the substituents on the ligand backbone, the relative stereochemistry within the ligand backbone, and the substituents at phosphorus, ligands 2c (R = 3,5-dimethylphenyl) and 3 were found to be optimal in the Rh-catalyzed hydrogenation of a variety of alpha-acylaminoacrylates in high enantioselectivity (89-97% ee). A similar optimization of the catalyst for the Rh-catalyzed hydrosilylation of ketones showed that ligand 3 afforded the highest enantioselectivities for a wide variety of aryl alkyl and dialkyl ketones (up to 99% ee). A model for asymmetric induction in the hydrogenation reaction is discussed in the context of existing models, based on the absolute stereochemistry of the products and the X-ray crystal structures of catalyst precursors and intermediates.  相似文献   

14.
The three-hindered quadrant phosphine ligands (R)-1-tert-butylmethylphosphino-2-(di-tert-butylphosphino)benzene ((R)-3H-BenzP*) and (R)-2-tert-butylmethylphosphino-3-(di-tert-butylphosphino)quinoxaline ((R)-3H-QuinoxP*) exhibited good to excellent enantioselectivities in the rhodium-catalyzed asymmetric hydrogenation of selected dehydroamino acid derivatives, enamides, and ethenephosphonates.  相似文献   

15.
Yan Liu  Zheng Wang  Kuiling Ding 《Tetrahedron》2012,68(37):7581-7585
Rh(I) complexes of a class of modular chiral monodentate phosphoramidites were highly efficient for the asymmetric hydrogenation of enol esters bearing α-aryl or α-alkyl groups, to afford the corresponding hydrogenation products in high enantioselectivities (87–95% ee) and reactivities (turnover number up to 10,000). These ligands were also shown to be effective in Rh(I)-catalyzed asymmetric hydrogenation of the potassium salt of (E)-3-cyano-5-methylhex-3-enoate, to give the corresponding product (a precursor to CI-1008) with up to 95% ee and complete conversion of substrate.  相似文献   

16.
A new class of unsymmetrical hybrid phosphine--aminophosphine ligands has been prepared from commercially available, inexpensive (S)-1-phenylethylamine through a concise synthetic procedure. These ligands are not very sensitive to air and moisture, and displayed good enantioselectivities in the Rh-catalyzed asymmetric hydrogenation of various dimethyl alpha-benzoyloxyethenephosphonates bearing beta-aryl, beta-alkyl, and beta-alkoxy substituents and N-benzyloxycarbonyl alpha-enamido phosphonates, in which up to 97% ee was obtained. A side-by-side comparison study disclosed that these new phosphine--aminophosphine ligands showed better enantioselectivity than BoPhoz ligands.  相似文献   

17.
The asymmetric hydrogenation of 2,2,2-trifluoroacetophenones and aryl perfluoroalkyl ketones was developed using a unique, well-defined chloride-bridged dinuclear rhodium(III) complex bearing Josiphos-type diphosphine ligands. These complexes were prepared from [RhCl(cod)]2, Josiphos ligands, and hydrochloric acid. As catalyst precursors, they allow for the efficient and enantioselective synthesis (up to 99 % ee) of chiral secondary alcohols with perfluoroalkyl groups. This system does not require an activating base for the hydrogenation of 2,2,2-trifluoroacetophenones. Additionally, the enantioselective C=O hydrogenations of 2-phenyl-3-(haloacetyl)-indoles, a class of privileged structures in medicinal chemistry, is reported for the first time.  相似文献   

18.
We have investigated a series of enantiopure phosphine-phosphite ligands (P(1)-P(2) = ligands 1-4) in the rhodium-catalyzed asymmetric hydrogenation reaction. Intermediate [Rh(P(1)-P(2))(cod)]BF(4) and [Rh(P(1)-P(2))(5)]BF(4) complexes (cod = 1,5-cyclooctadiene; 5 = methyl acetamidoacrylate ester) were observed by (31)P[(1)H] NMR. The [Rh(P(1)-P(2))(cod)]BF(4) complexes were precursors to active catalysts of the asymmetric hydrogenation reaction of several prochiral dehydroamino acid derivatives under mild reaction conditions (1 bar of hydrogen and 20 degrees C). The enantiomeric excess reached up to 99%.  相似文献   

19.
A convenient express procedure for the preparation of methyl (Z)-2-acetamido-3-(3,4-dimethoxyphenyl)acrylate was developed. Asymmetric hydrogenation of this substrate in the presence of rhodium catalysts involving synthetically available amidophosphite ligands was carried out, which is characterized by high enantioselectivity (to 99.5% ee) and complete conversion. An approach to the selective formation of cationic complexes containing two ligands of different nature in one coordination sphere of rhodium was suggested.  相似文献   

20.
New chiral phosphine-oxazoline ligands (7, SIPHOX) with a rigid and bulky spirobiindane scaffold were synthesized, starting with optically pure 7-diphenylphosphino-7'-trifluoromethanesulfonyloxyl-1,1'-spirobiindane, in four steps in 40-64% overall yield. Iridium complexes of 7, the chiral analogues of the Crabtree catalyst, were generated by coordination of ligands 7 and [Ir(COD)Cl](2) in the presence of sodium tetrakis-3,5-bis(trifluoromethyl)phenylborate. The complexes were characterized by NMR, ESI-MS, and X-ray diffraction analysis. The Ir-SIPHOX complexes can catalyze the hydrogenation of acyclic N-aryl ketimines under ambient pressure with excellent enantioselectivities (up to 97% ee) and full conversions. This result represents the highest enantioselectivity and the first example of the hydrogenation of imines catalyzed by chiral analogues of the Crabtree catalyst at ambient pressure. Studies on the stability of the catalysts revealed that the catalysts Ir-SIPHOX are very stable and resistant to the formation of inactive trimers under hydrogenation conditions. On the basis of the X-ray diffraction analysis of the structures of catalysts and amine products, a rational explanation for the enantiocontrol of the chiral catalysts in the hydrogenation of imines is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号