首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
本文在复频域内,通过应用混合变量粘弹性波方程和线性常微分方程组的指数矩阵解法,给出了一种计算非均匀吸收介质中地震波传播的广义传播矩阵解法。该方法适用于各种粘弹性模型,可模拟任意震源及所产生的各种体波、面波,数值结果表明具有很高的计算精度。  相似文献   

2.
Variant techniques are proposed for reproducing the elastic wave propagation in an unbounded medium such as the infinite elements, the absorbing boundary conditions or the perfect matched layers. Here, a simplified approach is adopted by considering absorbing layers characterized by the viscous Rayleigh matrix as studied by Semblat et al. [16] and Rajagopal et al. [14]. Here, further improvements to this procedure are provided. First, we start by establishing the strong form for the elastic wave propagation in a medium characterized by the Rayleigh matrix. This strong form will be used for deriving optimal conditions for damping out in the most efficient way the incident waves while minimizing the spurious reflected waves at the interface between the domain of interest and the Rayleigh damping layer. A procedure for designing the absorbing layer is proposed by targeting a performance criterion expressed in terms of logarithmic decrement of the wave amplitude in the layer thickness. Second, the GC subdomain coupling method, proposed by Combescure and Gravouil [9], is introduced for enabling the choice of any Newmark time integration schemes associated with different time steps depending on subdomains. When wave propagation is predicted by an explicit time integrator, the subdomain strategy is of great interest because it enables a different time integrator for the absorbing layer to be adopted. An external coupling software, based on the GC method, is used to carry out multi=time step explicit/implicit co-computations, making interact in time an explicit FE code (Europlexus) for the domain of interest, with an implicit FE code (Cast3m) handling the absorbing boundary layers. The efficiency of the approach is shown in 1D and 2D elastic wave propagation problems.  相似文献   

3.
Inversionofthematerialfunctionswiththemeasurementdataobtainedfromthescatteringexperimentisofcentralimportanceinsomeengineeringproblems.Forexample,scatteredelectromagneticwavescanbeusedtoreconstructthepermittivity,conductivityandsusceptibilitykernelof…  相似文献   

4.
In the context of acoustic or elastic wave propagation, the non-periodic asymptotic homogenization method allows one to determine a smooth effective medium and equations associated with the wave propagation in a given complex elastic or acoustic medium down to a given minimum wavelength. By smoothing all discontinuities and fine scales of the original medium, the homogenization technique considerably reduces meshing difficulties as well as the numerical cost associated with the wave equation solver, while producing the same waveform as for the original medium (up to the desired accuracy). Nevertheless, finding the effective medium requires one to solve the so-called “cell problem”, which corresponds to an elasto-static equation with a finite set of distinct loadings. For general elastic or acoustic media, the cell problem is a large problem that has to be solved on the whole domain and its resolution implies the use of a finite element solver and a mesh of the fine scale medium. Even if solving the cell problem is simpler than solving the wave equation in the original medium (because it is time and source independent, based on simple tetrahedral meshes and embarrassingly parallel) it is still a challenge. In this work, we present an alternative method to the finite element approach for solving the cell problem. It is based on a well-known method designed by H. Moulinec and P. Suquet in 1998 in structural mechanics. This iterative technique relies on Green functions of a simple reference medium and extensively uses Fast Fourier Transforms. It is easy to implement, very efficient and relies on a simple regular gridding of the medium. Through examples we show that the method gives excellent results, even, under some conditions, for discontinuous media.  相似文献   

5.
Hany H. Sherief  S. E. Khader 《Meccanica》2013,48(10):2511-2523
In this work we study wave propagation for a problem of an infinitely long solid conducting circular cylinder whose lateral surface is traction free and subjected to known surrounding temperatures in the presence of a uniform magnetic field in the direction of the axis. The problem is in the context of generalized magneto-thermo-elasticity theory with one relaxation time. Laplace transform techniques are used to derive the solution in the Laplace transform domain. The inversion process is carried out using a numerical method based on Fourier series expansions. Wave propagation in the elastic medium and in the free space, bounding it, is investigated.  相似文献   

6.
透射边界条件在波动谱元模拟中的实现:二维波动   总被引:1,自引:0,他引:1  
邢浩洁  李鸿晶 《力学学报》2017,49(4):894-906
将邢浩洁和李鸿晶提出的多次透射公式(multi-transmitting formula,MTF)的谱元格式应用于均匀介质中线弹性SH波动问题的谱元模拟.假定紧邻人工边界的一层谱单元为具有直线边界的四边形单元,以保证每个人工边界节点都唯一对应一条指向内域的离散网格线.人工边界节点在某时刻的位移由该离散网格线上的节点在前若干时刻的位移确定,按照MTF谱元格式进行计算.通过平面波以一定角度传播的外源问题算例和点源脉冲自由扩散的内源问题算例,验证了方法的可行性以及对实际复杂波动问题的适用性.通过不同类型初值问题算例,在时域内分析了插值多项式阶次、人工波速和透射阶次三个参数对反射误差的影响.结果表明:插值多项式阶次较高的格式会表现出更好的精度,但总体上对反射误差的影响较小;人工波速对反射误差具有显著影响,当人工波速小于介质物理波速时反射误差较大,而当人工波速等于或稍大于介质物理波速时反射误差处于较低水平;透射阶次对反射误差具有决定性影响,表现在不失稳的情形下提高透射阶次能够迅速降低反射误差,但内源问题从三阶MTF开始出现飘移失稳,外源问题从二阶MTF开始出现轻微的飘移失稳.  相似文献   

7.
地下爆炸与介质的能量耦合和介质中的波传播机制是理解地下爆炸源物理的重要基础。为研究地下爆炸辐射地震波能量的传播衰减规律,分析了黏弹性介质中地下爆炸地震波能量的组成。基于无限介质中黏弹性球面波理论,给出了速度、位移、应力、应变等物理量Laplace域的理论解。利用Laplace数值逆求解方法,建立了黏弹性介质中地下爆炸辐射地震波场的计算方法。以干黄土作为典型黏弹性材料,计算给出了地震波能量的传播特征,分析了地下爆炸辐射能量的传播衰减规律。结果表明:(1)在黏弹性介质中,某球面处流入的能量随半径增加而逐渐降低。在理想弹性介质中,某球面处流入的能量在几倍弹性半径外即可稳定到某一定值;(2)在某一固定的有限观测区域内,当观测时间足够长时,势能和耗散能均趋于某一定值,辐射动能趋于零;(3)当有限的观测区域能容纳一个完整波长的地震波时,地震波辐射动能的稳态值随波传播距离的增大而减小,总体上可以用指数函数和幂函数进行分段拟合。  相似文献   

8.
多层地基条带基础动力刚度矩阵的精细积分算法   总被引:2,自引:0,他引:2  
提出应用精细积分算法计算多层地基的动力刚度问题. 精细积分是计算层状介质中波传播的高效而精确的数值方法. 利用傅里叶积分变换将层状地基的波动方程转换为频率-波数域内的两点边值问题的常微分方程组, 运用精细积分方法求解格林函数, 最后再将得到的频率-波数域内地基表面的动力刚度矩阵转换到频率-空间域内, 进而得到刚性条带基础频率域的动力柔度或刚度矩阵. 所建议的精细积分算法, 可以避免一般传递矩阵计算中的指数溢出问题, 对各种情况有广泛的适应性, 计算稳定, 在高频段可以保障收敛性, 并能达到较高的计算精度.   相似文献   

9.
Acoustic propagation in a self-similar porous medium having a rigid frame is studied. A fractional propagation equation in a porous material of non-integer dimension is established using the variational method (Stillinger–Palmer–Stavrinou formalism). The wave equation is solved analytically in the time domain using the Laplace transform method. The analytical solution of the propagation equation shows the existence of a supersonic wave whose front wave velocity depends on the non-integer dimension and the tortuosity of the self-similar porous material. Numerical simulations of the amplitude of the ultrasonic wave inside the material show the sensitivity of the main important parameters describing the propagation (non-integer dimension, tortuosity, viscous and thermal characteristic lengths). The non-integer dimension seems to be the only parameter which acts on both the amplitude and the velocity of the acoustic wave.  相似文献   

10.
固体非傅立叶温度场的时域间断Galerkin有限元法   总被引:1,自引:0,他引:1  
运用时域间断Galerkin有限元法[1],对高频非傅立叶热波动问题[2-3]进行分析。其主要特点是:取温度及温度的时间导数为基本未知量,对其分别进行3次Hermite插值和线性插值。在保证节点温度自动保持连续的基础上,温度的时间导数在离散时域存在间断。数值结果表明所提出的方法能够滤掉虚假的数值震荡,能够良好地模拟固体中的非傅立叶热波动行为。  相似文献   

11.
12.
One of the big issues in finite element solutions of wave propagation problems is the presence of spurious high-frequency oscillations that may lead to divergent results at mesh refinement. The paper deals with the extension of the new two-stage time-integration technique developed in our previous papers to the solution of wave propagation problems with explicit time-integration methods.The explicit central difference method is used for accurate time-integration of the semi-discrete system of elastodynamics at the stage of basic computations and allows spurious high-frequency oscillations. To filter these oscillations, pre- or/and post-processing (the filtering stage) is applied using a few time increments of the implicit time-continuous Galerkin method with large numerical dissipation.A special calibration procedure is used for the selection of the minimum necessary amount of numerical dissipation (in terms of a time increment) at the filtering stage. In contrast to existing approaches that use a time-integration method with the same dissipation (or artificial viscosity) for all time increments, the new technique yields accurate and non-oscillatory results for wave propagation problems without interaction between user and computer code. The solutions of 3-D wave propagation and impact problems show the effectiveness of the new approach.  相似文献   

13.
This paper presents a parametric model to study the transient bending wave propagation in a viscoelastic sandwich plate due to impact loading. The effect of partial constrained layer damping (PCLD) geometry on wave propagation is investigated by comparing with propagation in single layer elastic plate. Several boundary conditions are also considered, and their effect on wave propagation is highlighted.The equation of motion is obtained from Lagrange’s equations. For the single layer plate, the governing equation is solved in time domain using Newman and Wilson method. For the plate with PCLD, the frequency dependant viscoelastic behavior of the core is represented by Prony series; the equation of motion is converted into frequency domain using Fourier transform the displacement is obtained in the frequency domain and is converted into time domain with the Inverse Fast Fourier Transform.The model was validated in our previous paper (Khalfi and Ross (2013)) with experimental results, additional validation is carried in this paper with literature, and good agreement is recorded. The results show that the plate covered with PCLD remains a dispersive medium. The shape of the wave is mainly related to the sandwich stiffness while the viscoelastic layer contributes in reducing the amplitude and speed of propagation. The particularity of this transient model lies in its ability to follow the shape of the bending wave at all times to observe formation, propagation and disappearance. With this model, the influence of any structural input parameters on the bending wave can be studied. The findings presented will also serve as a research base for more advanced horizons.  相似文献   

14.
This study focuses on the numerical modeling of wave propagation in fractionally-dissipative media. These viscoelastic models are such that the attenuation is frequency-dependent and follows a power law with non-integer exponent within certain frequency regimes. As a prototypical example, the Andrade model is chosen for its simplicity and its satisfactory fits of experimental flow laws in rocks and metals. The corresponding constitutive equation features a fractional derivative in time, a non-local-in-time term that can be expressed as a convolution product whose direct implementation bears substantial memory cost. To circumvent this limitation, a diffusive representation approach is deployed, replacing the convolution product by an integral of a function satisfying a local time-domain ordinary differential equation. An associated quadrature formula yields a local-in-time system of partial differential equations, which is then proven to be well-posed. The properties of the resulting model are also compared to those of the Andrade model. The quadrature scheme associated with the diffusive approximation, and constructed either from a classical polynomial approach or from a constrained optimization method, is investigated. Finally, the benefits of using the latter approach are highlighted as it allows to minimize the discrepancy with the original model. Wave propagation simulations in homogeneous domains are performed within a split formulation framework that yields an optimal stability condition and which features a joint fourth-order time-marching scheme coupled with an exact integration step. A set of numerical experiments is presented to assess the overall approach. Therefore, in this study, the diffusive approximation is demonstrated to provide an efficient framework for the theoretical and numerical investigations of the wave propagation problem associated with the fractional viscoelastic medium considered.  相似文献   

15.
Time domain simulation of the interaction between offshore structures and irregular waves in shallow water becomes a focus due to significant increase of liquefied natural gas (LNG) terminals. To obtain the time series of irregular waves in shallow water, a numerical wave tank is developed by using the meshless method for simulation of 2D nonlinear irregular waves propagating from deep water to shallow water. Using the fundamental solution of Laplace equation as the radial basis function (RBF) and locating the source points outside the computational domain, the problem of water wave propagation is solved by collocation of boundary points. In order to improve the computation stability, both the incident wave elevation and velocity potential are applied to the wave generation. A sponge damping layer combined with the Sommerfeld radiation condition is used on the radiation boundary. The present model is applied to simulate the propagation of regular and irregular waves. The numerical results are validated by analytical solutions and experimental data and good agreements are observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
This work presents a numerical model designed for the simulation of water‐wave impacts on a structure when aeration of the liquid phase is considered. The model is based on a multifluid Navier–Stokes approach in which all fluids are assumed compressible. The numerical method is based on a finite volume algorithm in space and a second order Runge–Kutta method in time. A validation of this model is performed. It shows a good accuracy for acoustic and shock wave propagation in a bubbly liquid and for wave breaking. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
作为复合材料动力学实验与数值研究的应用实例 ,实验研究采用正交异性动态光弹性方法 ,数值分析运用各向异性介质的时域边界元方法。纤维增强光弹性复合材料平板被用来模拟含孔洞的正交异性半无限域 ,用小口径步枪施加与纤维方向成 0及 90两个方向的冲击载荷 ,在正交异性动态光弹性实验中记录了应力波在孔洞周围的传播、反射与绕射过程 ,此过程被进一步转换成应力分量的变化时程 ,并与相应的时域边界元方法的数值分析结果进行了比较。  相似文献   

18.
针对实际地下工程中普遍存在的材料非线性以及半无限介质域的处理问题,给出了基于时间有关基本解的时域边界元法与非线性动力有限元法的耦合方法,应用该耦合方法计算了一马蹄形截面地下防护结构与围岩受爆炸冲击波作用下非线性相互作用的时间历程,并与线弹性情况进行了比较分析。结果表明:本文的方法具有较高精度,真实地再现了波在弹性层中传播以及反射的全过程。  相似文献   

19.
提出了一种计算出平面SH波斜入射时弹性半空间自由波场时域计算的一维化有限元方法。首先利用Snell定律确定平面波沿水平方向的传播规律,在用有限元法对弹性半空间进行离散化时,竖向单元尺寸根据波动有限元模拟精度要求确定,而水平向有限元网格尺寸根据水平向波的传播规律和采用的离散时间步长确定,使得有限元离散模型中任意节点的运动可以用水平向相邻节点的运动表示,从而将二维有限元节点运动方程组化为一维的形式。求解此一维方程组,可得到弹性半空间中一列节点的运动,再根据行波的传播规律,可确定全空间自由波场。理论分析和数值算例表明,该方法具有较高的精度和良好的稳定性。  相似文献   

20.
Acoustic waves scattering from a rigid air-saturated porous medium is studied in the time domain. The medium is one dimensional and its physical parameters are depth dependent, i.e., the medium is layered. The loss and dispersion properties of the medium are due to the fluid-structure interaction induced by wave propagation. They are modeled by generalized susceptibility functions which express the memory effects in the propagation process. The wave equation is then a fractional telegraphist’s equation. The two relevant quantities are the scattering operators—transmission and reflection operators—which give the scattered fields from the incident wave. They are obtained from Volterra equations which are fractional equations for the scattering operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号