首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Er3+/Yb3+-codoped 70TeO2-5Li2O-10B2O3-15GeO2 glass was prepared. The thermal stability, absorption spectra, emission spectra and up-conversion spectra were measured and investigated. The Judd-Ofelt analysis based on absorption spectra was performed in order to determine the Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), spontaneous emission probability, radiative lifetime and branching ratios of several Er3+ transitions. It was found that this studied glass has good thermal stability, broad fluorescence full width at half maximum (FWHM), large stimulated emission cross-section and strong up-conversion emissions at about 532, 546 and 659 nm, corresponding to the 2H(11/2)-->4I(15/2), 4S(3/2)-->4I(15/2) and 4F(9/2)-->4I(15/2) transitions of Er3+, respectively under the excitation at 970 nm. The results suggest that this Er3+/Yb3+-codoped germano-tellurite glass may be a potentially useful material for developing potential amplifiers and up-conversion optical devices.  相似文献   

2.
采用高温熔融法制备了一种新的Er3+/Yb3+共掺氟磷酸盐玻璃,测试和分析了其密度、吸收光谱以及荧光光谱,讨论了Er3+离子和Yb3+离子对光谱性质的影响.根据Judd-Ofelt理论计算了玻璃中Er3+离子的强度参数Ωt(t=2,4,6),分别为Ω2=4.36×10-20cm2,Ω4=1.35×10-20cm2,Ω6=0.79×10-20cm2,以及Er3+离子4I13/2能级荧光寿命τm=8.26ms.主发射峰1.53μm处半高宽(FWHM)为68nm.根据McCumber理论计算了Er3+的受激发射截面σe=8.5×10-21cm2.比较了不同玻璃基质中Er3+离子的光谱特性,结果表明:Er3+/Yb3+双掺氟磷酸盐玻璃在1.53μm附近具有较宽的半高宽和较大的受激发射截面,是一种高增益掺铒光纤放大器的理想介质材料.  相似文献   

3.
The spectroscopic properties and thermal stability of Er3+-doped Bi2O3-B2O3-Ga2O3 glasses are investigated experimentally. The effect of Ga2O3 content on absorption spectra, the Judd-Ofelt parameters Omega t (t=2, 4, 6), fluorescence spectra and the lifetimes of Er3+:4I 13/2 level are also investigated, and the stimulated emission cross-section is calculated from McCumber theory. With the increasing of Ga2O3 content in the glass composition, the Omega t (t=2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) and the 4I 13/2 lifetimes of Er3+ first increase, reach its maximum at Ga2O3=8 mol.%, and then decrease. The results show that Er3+-doped 50Bi2O3-42B2O3-8Ga2O3 glass has the broadest FWHM (81nm) and large stimulated emission cross-section (1.03 x1 0(-20)cm2) in these glass samples. Compared with other glass hosts, the gain bandwidth properties of Er+3-doped Bi2O3-B2O3-Ga2O3 glass is better than tellurite, silicate, phosphate and germante glasses. In addition, the lifetime of 4I 13/2 level of Er(3+) in bismuth-based glass, compared with those in other glasses, is relative low due to the high-phonon energy of the B-O bond, the large refractive index of the host and the existence of OH* in the glass. At the same time, the glass thermal stability is improved in which the substitution of Ga2O3 for B2O3 strengthens the network structure. The suitability of bismuth-based glass as a host for a Er3+-doped broadband amplifier and its advantages over other glass hosts are also discussed.  相似文献   

4.
The spectral properties of Er3+/Yb3+ codoped tungsten-tellurite (WT) glasses have been investigated. The measured absorption spectra are analyzed by Judd-Ofelt theory. The compositional change of intensity parameter omega2 is attributed to the change in the covalency between the Er3+ and oxygen ions, the asymmetry in the local structures around the Er3+ ions can be neglected. The lifetimes of 4I(13/2) level of Er3+ in WT glasses are measured and comparable with other TeO2-based glasses. The stimulated emission cross-section is calculated based on McCumber theory. The fluorescence full width at half maximum (FWHM) and the emission cross-section (sigma(peak)) of the 4I(13/2) --> 4I(15/2) transition of Er3+ in different glass hosts have been compared. The suitability of such WT glasses as host materials for 1.5 microm broadband amplification is discussed.  相似文献   

5.
The bismuth glasses with Er3+ and Er3+/Yb3+ co doped were fabricated by the technique of high temperature melting. The absorption and fluorescence spectra, fluorescence lifetime and FWHM were measured. The explanation of concentration quenching in case of high level Er3+ doped the bismuth glasses is given. The sensitizing of Yb3+ to Er3+ in Er3+/Yb3+ co doped bismuth glasses is discussed. The explanation of the influence on absorption and fluorescence spectra, fluorescence lifetime and FWHM in case of the change of Er3+ or Yb3+ in bismuth glasses with Er3+/Yb3+ co doped is given. It is found that the change of Er3+ content has obviously influenced the fluorescence lifetime and FWHM while the change of Yb3+ content has remarkably influenced the absorption and fluorescence intensity. The band at around 1.54 μm in Er3+/Yb3+ co doped bismuth glass reaches 76 nm and the fluorescence lifetime is 0.55 ms.  相似文献   

6.
Er(3+)/Yb(3+) co-doped 60Bi(2)O(3)-(40 - x)B(2)O(3)-xGeO(2) (BBG; x=0, 5, 10, 15 mol%) glasses that are suitable for fiber lasers, amplifiers have been fabricated and characterized. The absorption spectra, emission spectra, and lifetime of the (4)I(13/2) level and quantum efficiency of Er(3+):(4)I(13/2) --> (4)I(15/2) transition were measured and calculated. With the substitution of GeO(2) for B(2)O(3), both Delta lambda(eff) and sigma(e) decrease from 75 to 71 nm and 9.88 to 8.12 x 10(-21) cm(2), respectively. The measured lifetime of the (4)I(13/2) level and quantum efficiency of Er(3+):(4)I(13/2) --> (4)I(15/2) transition increase from 1.18 to 1.5 ms and 36.2% to 43.2%, respectively. The emission spectra of Er(3+):(4)I(13/2) --> (4)I(15/2) transition was also analyzed using a peak-fit routine, and an equivalent four-level system was proposed to estimate the stark splitting for the (4)I(15/2) and (4)I(13/2) levels of Er(3+) in the BBG glasses. The results indicate that the (4)I(13/2) --> (4)I(15/2) emission of Er(3+) can be exhibit a considerable broadening due to a significant enhance the peak A, and D emission.  相似文献   

7.
The Er3+/Yb3+ co-doped glasses with compositions of xBi2O3-(65-x)P2O5-4Yb2O3-11Al2O3-5BaO-15Na2O (where x=0, 2.5, 5, 7.5 and 10 mol%) were prepared using the normal melt quench technique. The optical absorption spectra of the glasses were recorded in the wavelength range 300-1700 nm. The effect of Bi2O3 content on the thermal stability and absorption spectra of glasses was investigated. In addition, the Judd-Ofelt parameters and oscillator strengths were calculated by employing Judd-Ofelt theory. It was observed that the positions of the fundamental absorption edge and cut-off wavelength shifted towards red as the content of Bi2O3 increased. However, there were no red shifts found both in the peak wavelength and in the center of mass wavelength of all absorption bands with Bi2O3 content increasing. The results of Judd-Ofelt theory analysis showed that Judd-Ofelt parameters Omega t (t=2, 4, 6) changed sharply when Bi2O3 concentration exceeded 5 mol%. The variation trends of experimental oscillator strength were similar with those of Judd-Ofelt parameters as function of Bi2O3 concentrations. Moreover, differential scanning calorimetry experiments showed that the increases of Bi2O3 content weakened the network structure and then lowered the thermal stability of the glasses. The spontaneous emission probability A rad, branching ratio beta and the radiative lifetime tau rad were also calculated and analyzed. The stimulated emission cross-section of Er3+ was calculated according to the McCumber theory. It was found that the stimulated emission cross-section of Er3+ was monotonically increases with Bi2O3 content increasing.  相似文献   

8.
A series of novel 70TeO2-(15-x)B2O3-xNb2O5-15ZnO-1wt.% Er2O3 (TBN x=0, 3, 6, 9, 12 and 15 mol%) tellurite glasses were prepared. The thermal stability, absorption spectra, emission spectra, and the lifetime of the (4)I(13/2) level of Er(3+) ions were measured and investigated. Three Judd-Ofelt intensity parameters Omega(t) (t=2, 4 and 6) (Omega(2)=(5.42-6.76)x10(-20)cm(2); Omega(4)=(1.37-1.73)x10(-20)cm(2); Omega(6)=(0.70-0.94)x10(-20)cm(2)) of Er(3+) ions were calculated by Judd-Ofelt theory. It is found that the Omega(6) first increases with the increase of Nb2O5 content from 0 to 6 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section (sigma(e)(peak)=(0.77-0.91)x10(-20)cm(2)) of Er(3+): (4)I(13/2)-->(4)I(15/2) transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=65-73 nm) of the (4)I(13/2)-->(4)I(15/2) transition of Er(3+) ions were measured. The results indicate that these new TBN glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

9.
The novel Er(3+) single-doped and Er(3+)/Yb(3+) co-doped tellurite glasses were prepared. The effect of Yb(2)O(3) concentration on absorption spectra, emission spectra and upconversion spectra of glasses were measured and investigated. The emission intensity, fluorescence full width at half maximum (FWHM) and upconversion luminescence of Er(3+) go up with the increasing concentration of Yb(3+) ions. The maximum FWHM of (4)I(13/2) --> (4)I(15/2) transition of Er(3+) is approximate 77 nm for 1.41 x 10(21)ions/cm(3) concentration of Yb(3+)-doped glass. The visible upconversion emissions at about 532, 546 and 659 nm, corresponding to the (2)H(11/2) --> (4)I(15/2), (4)S(3/2) --> (4)I(15/2) and (4)F(9/2) --> (4)I(15/2) transitions of Er(3+), respectively, were simultaneously observed under the excitation at 970 nm. Subsequently, the possible upconversion mechanisms and important role of Yb(3+) on the green and red emissions were discussed and compared. The results demonstrate that this kind of tellurite glass may be a potentially useful material for developing potential amplifiers and upconversion optical devices.  相似文献   

10.
The absorption and emission spectroscopies of Er3+ doped and Er3+/Yb3+ codoped Ca(PO3)2, Sr(PO3)2 and Ba(PO3)2 glasses have been studied. From the Judd-Ofelt intensity parameters, the spontaneous emission probabilities of some relevant transitions and the radiative lifetimes of several excited states of Er3+ have been calculated. The decay curves of the Er3+ emission at 1.5 microm have been measured at different temperatures. The data have been fitted using a stretched exponential function and the obtained experimental lifetimes have been compared with the calculated radiative lifetimes. The difference between the experimental and calculated lifetimes is attributed to the presence of traces of OH groups in the host glasses. The absolute OH content in some glasses has been determined from the infrared spectra. The emission spectra at 1.5 microm of the Er3+ ion in the codoped glasses have been measured at different temperatures. The integrated emission intensities decrease significantly on passing from room temperature to 13 K, suggesting a temperature dependence of the rate of the energy transfer process between Yb3+ and Er3+.  相似文献   

11.
A series of novel Er3+/Yb3+ co-doped 75TeO2-(25-x)Nb2O5-xWO3 (TNW: x=0, 3, 6, 9, 12, and 15 mol%) glasses have been prepared. Effect of WO3 on the thermal stability and spectroscopic properties of Er3+/Yb3+ co-doped niobic tellurite glasses have been investigated. With WO3 content increasing from 0 to 15 mol%, the fluorescence full width at half maximum (FWHM), the peak of stimulated emission cross-section (sigmaepeak), the measured lifetime (taum), and quantum efficiency (eta) change from 71 nm, 8.47x10(-21) cm2, 2.86 ms, 84.1% to 76 nm, 7.22x10(-21) cm2, 3.14 ms, 88.9%, respectively. The FWHM and sigmaepeak of Er3+ ions in different glass hosts were compared; the obtained data reveals that this new TNW4 glass may be a potentially useful candidate material host for broadband amplifiers.  相似文献   

12.
The 2.7 μm emission properties of Er(3+)/Nd(3+)-codoped fluorotellurite glasses were investigated in the present work. The thermal stability, refractive index, absorption and transmission spectra, and emission spectra were measured and investigated. The 2.7 μm emission in Er(3+)/Nd(3+)-codoped fluorotellurite glasses was enhanced with the increase of fluorine ions. The Judd-Ofelt analysis based on absorption spectra was performed in order to determine the Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6), spontaneous emission probability, radiative lifetime and branching ratios of Er(3+):(4)I(11/2) → (4)I(13/2) transition. It is found that the Er(3+)/Nd(3+)-codoped fluorotellurite glass possesses a lower spontaneous transition probability A (58.95 s(-1)) but a higher branching ratio β (15.72%) corresponding to the stimulated emission of Er(3+):(4)I(11/2) → (4)I(13/2) transition. Additionally, the transmittance was also tested and reached a maximum when the molar concentration of ZnF(2) is 15%. The presence of fluorine ions greatly decreases the population of OH(-) groups, which affects the 2.7 μm emission effectively by means of decreasing the rate of energy transfer to impurities (e.g., OH(-) groups).  相似文献   

13.
Er3+/Yb3+ co-doped TeO2-B2O3-Nb2O5-ZnO (TBN) glasses were prepared. The absorption spectra and upconversion luminescence spectra of TBN glasses were measured and analyzed. The upconversion emission bands centered at 530, 546 and 658 nm were observed under the excitation at 975 nm, corresponding to the transitions of 2H11/2-->4I15/2, 4S3/2-->4I15/2 and 4F9/2-->4I15/2 respectively. The ratio of red emission to green emission increases with an increasing of Yb3+ ions concentration. According to the quadratic dependence on excitation power, the possible upconversion mechanisms and processes were discussed.  相似文献   

14.
This paper reports on the optical spectroscopic properties and thermal stability of Er(3+)-doped antimony-borosilicate glasses for developing 1.5mum optical amplifiers. Upon excitation at 980nm laser diode, an intense 1.5mum infrared fluorescence has been observed with the maximum full width at half maximum (FWHM) of 90nm for Er(3+)-doped antimony-borosilicate glasses. The emission cross-section and the lifetime of the (4)I(13/2) level of Er(3+) ions are 6.3x10(-21)cm(2) and 0.30ms, respectively. It is noted that the product of the emission cross-section and FWHM of the glass studied is as great as 567x10(-21)cm(2)nm, which is comparable or higher than that of bismuthate and tellurite glasses.  相似文献   

15.
(100-x)TeO(2)-xNb(2)O(5) (x=5-20) niobic tellurite glasses doped with 0.5 mol.% Er(2)O(3) were synthesized, and their thermal, mechanical, and spectroscopic properties were measured and compared to the properties of the typical 75TeO(2)-20ZnO-5Na(2)O (TZN) tellurite glass. The refractive index (n(d)), density (rho), and glass transition temperature (T(g)) of bulk glasses increase with the Nb(2)O(5) content. The Vickers microhardness (H(v)) of bulk glass in niobic tellurite glasses also increases with the Nb(2)O(5) content. The values (2.5-3.2GPa) of H(v) in the niobic tellurite glasses are 47-88% larger than that (1.7GPa) in TZN glass. The effect of Nb(2)O(5) content on absorption spectra, the Judd-Ofelt parameters Omega(t) (t=2, 4, 6), fluorescence spectra and the lifetimes of Er(3+):I(13/2) level were also investigated, and the stimulated emission cross-section was calculated from McCumber theory. With increasing Nb(2)O(5) content in the glass composition, the Omega(t) (t=2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) of I(13/2) of Er(3+) increase, while the (4)I(13/2) lifetimes of Er(3+) decreases. Compared with TZN glass, the gain bandwidth properties of Er(3+)-doped TeO(2)-Nb(2)O(5) glass is much larger than in tellurite glass based TeO(2)-ZnO-Na(2)O system, bismush-based glass, germanate, and silicate glasses, which indicates that TeO(2)-Nb(2)O(5) glasses are better choice as a practical available host material for broadband Er(3+)-doped amplifier.  相似文献   

16.
Luminescence Properties and Crystal Growth of Er/Yb Codoped KGd(WO4)2   总被引:1,自引:0,他引:1  
1 INTRODUCTION In recent years much interest has been shown in the radiation laser around 1.54 μm for optical com- munications, medical and eye-safe light detecting and ranging applications[1~3]. Emission in the 1.54 μm range can be achieved with Er3 ion through 4I13/2→4I15/2, but the LD-pumping laser efficiency is commonly low owing to the weak absorption in- tensity of Er3 ion. Yb3 ion is often used as a sen- sitizer ion to increase the absorption light and then transfer the en…  相似文献   

17.
Optical transitions of Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 glass   总被引:3,自引:0,他引:3  
Optical absorption and emission properties of the Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 (TWB) glass has been investigated. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. The broad 1.5 microm fluorescence was observed under 970 nm excitation, and its full width at half maximum (FWHM) is 77 nm. The emission cross-section is calculated using the McCumber theory, and the peak emission cross-section is 1.03 x 10(-21) cm2 at 1.531 microm. This value is much larger than those of the silicate and phosphate glasses. Efficient green and weak red upconversion luminescence from Er3+ centers in the glass sample was observed at room temperature, and the upconversion excitation processes have been analyzed.  相似文献   

18.
We investigate the spectroscopic properties of the 1.5-microm emission from the (4)I(13/2)-->(4)I(15/2) transition of Er(3+) ions in bismuth-germanate-lead glasses for applications in broadband fiber amplifiers. The emission peak locates at 1532nm with a full width at half-maximum (FWHM) of approximately 65nm. The measured lifetime and the calculated emission cross-section of this transition are 3.3ms and 8.66x10(-21)cm(2), respectively. IR-to-green-upconversion occurs simultaneously upon excitation of the 1.5-microm emission with a commercially available 980nm laser diode. Effects of PbF(2) content on the thermal stability, structure and spectroscopic properties of Er(3+)-doped bismuth-germanate-lead glasses have been examined. We find that the substitution with PbF(2) provides a couple of potentials: shortening the UV cutoff band and decreasing the phonon energy of host glasses. Codoping of Yb(3+) significantly enhances both the green-upconversion and 1.5-microm emission intensity by means of a nonradiative Yb(3+)-->Er(3+) energy transfer. Energy transfer processes and nonradiative phonon-assisted decays could account for the population of the (2)H(11/2) level, which is an emitting level of the green-upconversion of Er(3+). The results indicate the possibility towards the development of bismuth-germanate-lead based glasses as photonics devices.  相似文献   

19.
The absorption spectra and upconversion fluorescence spectra of Er3+/Yb3+-codoped natrium-gallium-germanium-bismuth glasses are measured and investigated. The intense green (533 and 549 nm) and red (672 nm) emission bands were simultaneously observed at room temperature. The quadratic dependence of the green and red emission on excitation power indicates that the two-photon absorption processes occur. The influence of Ga2C3 on upconversion intensity is investigated. The intensity of green emissions increases slowly with increasing Ga2O3 content, while the intensity of red emission increases significantly. The possible upconversion mechanisms for these glasses have also been discussed. The maximum phonon energy of the glasses determined based on the infrared (IR) spectral analysis is as low as 740 cm-1. The studies indicate that Bi2O3-GeO2-Ga2O3-Na2O glasses may be potential materials for developing upconversion optical devices.  相似文献   

20.
The B2O3 was introduced into the Er3+ doped TeO2-ZnO-Na2O glass to increase the phonon energy of the host. The effect of B2O3 on the non-radiative rate of the 4I11/2-->4I13/2 transition of Er3+, the lifetime of the 4I11/2 and 4I13/2 levels, the green and red upconversion emissions intensity, and the 4I13/2-->4I15/2 emission intensity was discussed. The results show that the phonon energy of boro-tellurite glass is close to that of germanate glass and is quite smaller than that of borate glass. The lifetime of 4I11/2 level and the upconversion emissions decrease with increasing B2O3 concentration. The higher OH group concentration presented in the boro-tellurite glass may shorten the lifetime of 4I13/2 level and also reduce the quantum efficiency of 4I13/2-->4I15/2 emission. The future dehydrating procedures are suggested to enhance the efficiency of amplification at 1.5 microm band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号