首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our recent study, an ABA amphiphilic triblock copolymer poly(vinyl pyrrolidone)‐b‐poly(methyl methacrylate)‐b‐poly(vinyl pyrrolidone) (PVP‐b‐PMMA‐b‐PVP) was synthesized and directly blended with polyethersulfone (PES) to prepare membranes. To further investigate the effects of surface energy and miscibility on the near‐surface composition profile of the membranes, evaporation membrane and phase inversion membrane of PES/PVP‐b‐PMMA‐b‐PVP were prepared by evaporating the solvent in a vacuum oven, and by a liquid–liquid phase separation technique, respectively. The surface composition and morphology of the membranes were investigated using XPS and tapping mode atomic force microscopy, and the surface segregations of the membranes were compared and discussed. For the evaporation membrane, PVP blocks were buried below the lower surface energy PMMA blocks and PES substrate at the airside surface. For the phase inversion membrane, however, the hydrophilicity of PVP blocks were the biggest driving force because of the high speed exchange between water and solvent, and present at the membrane surface. Thus, the modified PES membrane prepared by using phase inversion method has a layer of PVP block brushes on its surface and has the better anticoagulant property, which might improve the blood compatibility of the membrane and has potential to be used in blood purification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
《先进技术聚合物》2018,29(2):989-1001
Herein, a novel method was reported for the use of polyethersulfone (PES) membranes in catalytic reactions with an enhanced distribution and superior catalytic activity of palladium nanoparticles immobilized on the surface of the membranes. For this purpose, the surface of PES membrane was treated with plasma, and subsequently, the consequent oxygen‐containing functional groups were reacted with APTES and 2‐pyridinecarbaldehyde, respectively, to provide sites by which Pd could form complexes. The mean roughness as well as the surface and cross‐sectional morphology were investigated using atomic force microscopy, scanning electron microscopy (SEM), and field‐emission scanning electron microscopy (FESEM), respectively. Furthermore, SEM mapping was used to examine the palladium distribution on the surface of the membranes. Further characterizations of as‐prepared Pd‐loaded PES membranes conducted using EDX, ICP, and XRD analyses. The reduction of p‐nitrophenol to p‐aminophenol was also used as a model reaction to investigate the membranes' performance. The results, analyzed using UV‐Vis instrument, demonstrated that the complete reduction of p‐nitrophenol was achieved at a short time via Pd‐chelated plasma‐treated membrane. Furthermore, the rod‐like and sphere‐like structure of Pd was acquired as a result of palladium chelating with nitrogen‐containing ligands, produced through the reaction between 2‐pyridinecarbaldehyde and (3‐Aminopropyl)triethoxysilane. It was observed that the rod‐like structure of Pd exhibited a trivial catalytic activity in reduction of p‐nitrophenol to p‐aminophenol in contrast with the sphere‐like structure, nonetheless.  相似文献   

3.
To improve surface protein-adsorption-resistant property of polyethersulfone (PES) membranes, soybean phosphatidylcholine (SPC) was added to PES casting solution. The blend membranes were prepared by a phase inversion method in a wet process. The surface of PES/SPC blend membranes was characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS data revealed that the phosphorylcholine (PC) groups were concentrated at the surface by changing the composition of coagulation bath. Addition of N,N-dimethylformamide (DMF) in coagulation bath could prolong coagulation time and facilitate the migration of SPC from polymer bulk to membrane surface. The PES/SPC blend membranes dramatically reduced BSA and fibrinogen adsorption compared to PES control membrane due to effective immobilization of PC groups at the surface of PES/SPC blend membranes.  相似文献   

4.
A styrene-maleic anhydride (SMA) alternating copolymer with ultrahigh molecular weight (Mw > 106) synthesized in super critical carbon dioxide (SC CO2) medium was used as hydrophilic polymeric additive in the preparation of polyethersulfone (PES) membranes. The PES/SMA blend membranes were prepared by immersion precipitation process. X-ray photoelectronic spectroscopy (XPS) measurements confirmed that the hydrolyzed SMA preferentially segregated to membrane–coagulant interface during membrane formation. For the PES/SMA blend membranes, no big change was observed in the cross-sectional structure and the mechanical properties were well maintained after SMA addition except that a thicker top layer was formed. The surface morphology analysis by atomic force microscopy (AFM) showed that the membrane surface roughness increased with the added SMA amount. The results of water contact angle, water absorbance measurements and static protein adsorption experiments revealed that the surface enrichment of SMA endowed PES/SMA blend membranes with significantly improved surface hydrophilicity and protein-adsorption resistance.  相似文献   

5.
In the present investigation, the preparation, characterization, and surface morphology of poly(amide‐imide) (PAI)/multi‐walled carbon nanotubes (MWCNTs) bionanocomposites (BNCs) were the main goals of the study. At first, an optically active PAI based on S‐valine as a biodegradable segment was synthesized. Then, carboxyl‐modified MWCNTs were functionalized with glucose (f‐MWCNT) as a biological active molecule in a green method to achieve a fine dispersion of f‐MWCNT bundles in the PAI matrix. The existence of S‐valine in the PAI matrix and functionalized MWCNT with glucose resulted in a series of potentially biodegradable nanocomposites. The obtained BNCs were characterized by various techniques. Field emission scanning and transmission electron microscopy micrographs of the composites showed a fine dispersion of f‐MWCNTs in the polymer matrix because of hydrogen bonding and π–π stacking interaction between f‐MWCNTs and polymer functional groups and aromatic moieties. Adding f‐MWCNTs into polymer matrix significantly improved the thermal stability of BNCs because of the increased interfacial interaction between the PAI matrix and f‐MWCNTs and also good dispersion of f‐MWCNT in the polymer matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Antimicrobial ultrafiltration membranes were prepared by coating silver nanoparticles on the surface of polyethersulfone (PES) membranes which were fabricated via phase inversion induced by the immersion precipitation technique, and their morphology and performance were compared with the antimicrobial PES membranes synthesized by adding the silver nanoparticles into the casting solution during the phase inversion process. For this purpose, stable and uniform colloidal solutions of the silver nanoparticles were prepared by chemical reduction of silver salt using fructose and dimethylformamide as a reducing agent. The silver nanoparticles were characterized by ultraviolet–visible spectroscopy, X‐ray powder diffraction and dynamic light scattering analysis. The morphology and surface properties of the prepared membranes were examined by field emission scanning electron microscopy and atomic force microscopy analysis. Moreover, the separation properties, antimicrobial efficiency and amount of silver release from the PES nanocomposite membranes during the cross flow ultrafiltration were determined. The results indicated that the silver content of the coated PES membranes was greater than the membranes fabricated by the solution blending method. Also, the permeation flux of the silver‐coated membranes was similar to the neat PES membranes, while the membranes prepared by the second approach had less flux. The membranes synthesized by both coating and blending methods showed high antimicrobial and bactericidal activity against gram‐negative bacteria such as Escherichia coli and gram‐positive bacteria such as Staphylococcus aureus. Finally, the prepared antimicrobial membranes were successfully used for the ultrafiltration of raw milk to reduce the microbial load during the concentration process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Microporous and highly hydrophobic low‐density polyethylene (LDPE) hollow fiber membranes were successfully prepared via a solvent‐free method, combining melt‐extrusion, and salt‐leaching techniques. NaCl particles with particle size of 5–10 µm were mixed with LDPE pellets to produce a blend of 35, 40, 50, 60, 65 and 68 wt% of salt. A microporous structure was produced by leaching the salt particles from the hollow fiber matrix via immersion in water at 60°C. The fabricated membranes were then characterized in terms of morphology, porosity and pore size distribution, surface roughness, and hydrophobicity, as well as mechanical properties. The remarkable increase in the water contact angles from 98° for LDPE hollow fibers fabricated without the addition of salt (blank sample) to 130° for membranes fabricated with initial salt content of 68 wt% is mainly attributed to the rough surface structure, comprising a large number of micropapillas produced by removing the imbedded salt crystals. The increase in surface roughness and porosity of hollow fiber membranes with increasing initial salt content was confirmed by scanning electron microscope and atomic force microscopy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Improved ultrafiltration membranes were prepared by the phase inversion technique via immersion precipitation of synthesized carboxylic acid containing polyamide (CPA) and polyethersulfone (PES) in dimethylacetamide. The CPA was synthesized and characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance, thermogravimetric analysis, and differential scanning calorimetry analyses. Next, the influence of CPA adding and its different concentrations on the performances and membrane structure were investigated. The obtained membranes were characterized by means of FTIR in the attenuated total reflection mode, scanning electron microscopy, and contact angle. The membrane performance studies revealed that the presence of CPA in the membrane structure increased water permeability while reducing protein fouling. It turned out that the PES/CPA membranes had better porosity, more hydrophilic surface, and more vertically finger‐like pores in comparison with the bare PES membrane. When the CPA concentration in the blending solution reached 1 wt%, the water permeability increased from 7.3 to 153.6 L/m2 h1. The attenuated total reflection‐FTIR analysis confirmed that CPA was captured in the membrane matrix.  相似文献   

9.
The aim of this paper is to survey interlaboratory studies of performance data to produce highly permeable thin‐film composite (TFC) polyamide nanofiltration (NF) membrane in the form of flat sheet at bench scale. TFC polyamide NF membranes were fabricated via interfacial polymerization of 1,3‐phenylenediamine and trimesoyl chloride on porous polyethersulfone (PES) membrane. The NF membranes were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross‐flow filtration. The AFM and SEM analyses indicated that a rough and dense film was formed on the PES support membrane. The permeability and NaCl rejection of the NF membrane prepared at the presence of camphor sulfonic acid as pH regulator and triethylamine as accelerator in the aqueous solution were 21 l m?2 h?1 and 70%, respectively. In order to estimate the repeatability and reproducibility standard deviations, the development of an interlaboratory study was conducted by measurements of permeation flux and salt rejection of the synthesized membranes. Repeatability standard deviation of the permeation flux data for the membrane based on optimum formulation was 1.99, and reproducibility standard deviation was 3.55. Also based on this trend, repeatability standard deviation of the salt rejection data was 1.57, and reproducibility standard deviation was 4.11. The American Society for Testing and Materials standard E691‐05 was used for data validation of the repeatability and reproducibility standard deviations and consistency statistics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
pH‐sensitive poly (vinylidene fluoride) (PVDF)/poly (acrylic acid) (PAA) microgels membranes are prepared by phase inversion of the N, N‐dimethylformamide solution containing PAA microgels and PVDF in aqueous solution. The composition and structure of the blend membrane are investigated by Fourier transform infrared spectra, X‐ray photoelectron spectroscopy measurements, thermo gravimetric analysis, field‐emission scanning electron microscope and atomic force microscope. The results indicate the surface and cross section of the blend membranes have a porous structure with PAA microgels immobilized inside the pore and on the membrane surface. The blend PVDF membranes exhibit pH‐sensitive water flux, with the most drastic change in permeability observed between pH 3.7 and 6.3. The blend membranes are fouled by bovine serum albumin, and their antifouling property is enhanced by increasing PAA microgels, mainly derived from the improved hydrophilic property. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Polyethersulfone (PES) membrane, one of the most important polymeric materials because of its good chemical resistance, thermal stability, mechanical, and film‐forming properties, has already been used in hemodialysis, tissue engineering, and artificial organs. In order to improve the blood compatibility of PES membrane, many amphiphilic block copolymers have been synthesized and used as additives for surface modification. The object of this study is to develop a hydrophilic PES membrane by blending a comblike amphiphilic block copolymer poly (vinyl pyrrolidone)‐block‐poly [acrylate‐graft‐poly (methyl methacrylate)]‐block‐poly‐(vinyl pyrrolidone) [PVP‐b‐P (AE‐g‐PMMA)‐b‐PVP] synthesized by RAFT polymerization. The cytocompatibility performance of PVP‐b‐P (AE‐g‐PMMA)‐b‐PVP modified PES membrane was evaluated, which showed better cytocompatibility compared with that of pristine PES membrane. Endothelial cells cultured on the modified membranes present improved growth in terms of scanning electron microscope observation, MTT assay, and confocal laser scanning microscope observation. These results indicate that the modified membrane has great potential application in blood‐contact fields such as hemodialysis and bio‐artificial liver supports. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Sulfonated polyethersulfone (SPES) and poly (acrylonitrile-co-acrylic acid-co-vinyl pyrrolidone) (P(AN-AA-VP)), which provided sulfonic acid (SO(3)H) and carboxylic acid groups (COOH), respectively, were used to modify polyethersulfone (PES) membrane with a heparin-like surface by blending method. The SPES was prepared by sulfonation of PES using chlorosulfonic acid as the sulfonating agent, while the P(AA-AN-VP) was prepared through a free radical polymerization. The PES and modified PES membranes were prepared by a phase-inversion technique; the modified membranes showed lowered protein (bovine serum albumin, BSA; bovine serum fibrinogen, FBG) adsorption and suppressed platelet adhesion. For the modified membranes, significant decreases in thrombin-antithrombin (TAT) generation, percentage platelets positive for CD62p expression, and the complement activation on C3a and C5a levels were observed compared with those for the pure PES membrane. Due to the similar negatively charged groups as heparin, the modified membranes effectively prolonged the activated partial thromboplastin time (APTT). Furthermore, the modified membranes showed good cytocompatibility. Hepatocytes cultured on the modified materials exhibited improved functional profiles in terms of scanning electron microscope (SEM) observation and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay compared with those on the pure PES membrane. It could be concluded that the modified membranes with sulfonic acid and carboxylic acid groups were endowed with excellent biocompatibility, and the heparin-like surface modification seemed to be a promising approach to improve the biocompatibility of materials.  相似文献   

13.
The flux behavior of 0.2 μm nylon, polysulfone (PS), polyvinylidene fluoride (PVDF) and polyethersulfone (PES) membranes was examined during dead-end microfiltration of commercial apple juice. On nylon membranes, a 0.1 μm thick surface fouling layer rapidly formed that acted as a secondary membrane. The colloidal particles retained by this surface layer aggregated to form a thick loose gel structure, producing an anisotropic fouling structure. In contrast, the 4 μm thick surface fouling layer of PES was slower to form and had a more open structure with a lower flux resistance per unit thickness. The morphology of the PES surface layer also did not differ dramatically from the loose gel structure that subsequently formed on top of this secondary membrane. The PS surface fouling layer was similar in structure to nylon whereas the PVDF layer more closely resembled that found with PES. The density of the surface fouling layer did not directly correlate to membrane surface hydrophobicity or pure water flux. Atomic force microscopy (AFM) indicated that surface roughness strongly influenced surface fouling layer morphology. The membrane surface appears to act as a template for the fouling process; therefore, smooth membranes (nylon and PS) produce a dense surface fouling layer whereas this same layer on rough membranes (PES and PVDF) is much more open. Consequently, the fluxes of PES and PVDF membranes are less affected by fouling formation.  相似文献   

14.
Hydroxyl terminated poly(ether sulfone) (PES) has been grafted on multi‐walled carbon nanotube (MWCNT). The grafting reaction was confirmed by different characterization techniques such as Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The extent of the grafting was found to be around 58 wt%. Hybrid nanocomposite of epoxy with the modified MWCNT was also prepared. Effect of grafting on the mechanical, thermal, and viscoelastic properties was studied. Dynamic mechanical studies show an increase in the storage modulus for the nanocomposite prepared using PES‐grafted MWCNT compared with neat epoxy system. PES‐grafted MWCNT–epoxy nanocomposite induces a significant increase in both tensile strength (26%) and fracture toughness (125%) of the epoxy matrix. Field emission scanning electron micrographs of fractured surfaces were examined to understand the toughening mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Asymmetric polyethersulfone (PES) micro‐porous flat sheet membranes were prepared by the phase inversion method (PIM) and used as the support. PES‐PDMS composite membranes were fabricated with coating polydimethylsiloxane on the surface of PES membrane. The FluidMAG‐PAD was coated on PES and PES‐PDMS membrane to prepare super‐paramagnetic membranes for separation of oxygen from nitrogen. Permeance and O2/N2 selectivity were evaluated in the absence or presence of external magnetic field. In the absence of external magnetic field, the super‐paramagnetic polymer provides larger surface area leading to extended sites for oxygen adsorption. In the presence of magnetic field, the super‐paramagnetic particles obtained magnetic property leading to a pronounced interaction with oxygen resulting in elevated selectivity and permeability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Hybrid membranes containing multi‐walled carbon nanotubes (MWCNTs) were initially prepared to separate benzene/cyclohexane mixtures. Subsequently, MWCNT surfaces were chemically modified using two methods to change the surface polarity of the MWCNTs and improve the distribution thereof in Poly(methylmethacrylate) (PMMA). This change consequently enhanced the separation performance of hybrid membranes with MWCNTs. Raman spectroscopy was used to characterize the structure of the pristine MWCNTs and the modified MWCNTs. The morphology and distribution of the MWCNTs in PMMA were investigated by transmission electron microscopy. The results showed that the addition of MWCNTs clearly improved the separation performance of the hybrid membranes. Surface modification introduced polar groups onto the MWCNT surface, which significantly improved the distribution of MWCNTs in the PMMA membranes and the performance of hybrid membranes. MWCNTs with higher surface polarity also increased the amount of MWCNTs distributed homogeneously in PMMA. Aminated MWCNTs (MWCNT‐NH2) showed the highest surface polarity. Thus, the content of MWCNT‐NH2 well distributed in PMMA was the highest among the three types of MWCNTs. The highest separation factor for the hybrid membranes with 1.0 wt% MWCNT‐NH2 was about seven times that of membranes containing pristine MWCNTs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Low-temperature CO2 plasma is used for the treatment of poly-ethersulfone (PES), polyamide (PA) and poly-phenylene ethersulfone (PPE) ultrafiltration membranes. This has led to significant enhancement of the wetting characteristics of the membrane surface as is shown by contact angle measurements and Fourier transform infrared (FTIR) spectrum analysis of the treated membranes. Changes in the physical characteristics of the surface, such as tensile property, surface roughness, etc. are quantified by tensile strength measurement and atomic force microscopy (AFM), respectively. An increase in the measured values of the di-electric constants further highlights the hydrophilic modification of the surface. A series of ultrafiltration experiments using a BSA solution of known concentration under different operating conditions is performed and the deposition thicknesses over the membrane surface during ultrafiltration are measured directly using image analyzing microscopy. The results clearly demonstrate that a plasma treated PES membrane is more hydrophilic with smoother surface and resists fouling leading to significant enhancement of permeate flux.  相似文献   

18.
《先进技术聚合物》2018,29(6):1632-1648
In the present research, the low water flux of polyphenylsulfone membranes was addressed, and a novel improvement in their water permeation and fouling resistance was achieved using polyethylene glycol (PEG) as the hydrophilic additive. Scanning electron microscopy and field emission scanning electron microscopy, atomic force microscopy, attenuated total reflection Fourier‐transform infrared spectroscopy, thermogravimetric analysis, and tensile test were applied for the investigation of membrane morphology, surface topography, surface chemical structure, thermal stability, and mechanical properties, respectively. Moreover, the relative hydrophilicity/hydrophobicity of the membranes was assessed via determination of membrane water uptake capacity and water contact angle. The membrane performance was studied and compared by determination of pure water flux and filtration of canned beans production wastewater as well as bovine serum albumin solution. The filtration results indicated a remarkable pure water flux and 100% turbidity rejection provided by the polyphenylsulfone/PEG 20 000 membrane. In addition, it was confirmed that the amount of residual PEG within the membrane was increased with increasing PEG molecular weight and concentration.  相似文献   

19.
Amphiphilic graft copolymers having ultrahigh molecular weight poly(styrene-alt-maleic anhydride) (SMA) backbones and methoxyl poly(ethylene glycol) (MPEG) grafts were synthesized via the esterification between anhydride groups with hydroxyl groups. The synthesized graft copolymers, SMA-g-MPEGs, were used as additives in the preparation of polyethersulfone (PES) membranes via phase inversion process. X-ray photoelectron spectroscopy (XPS) analysis showed the comb-like graft copolymers spontaneously segregated to membrane surface during membrane formation. Water contact angle measurements and water absorbance experiments indicated the PES/SMA-g-MPEG blend membranes were much more hydrophilic than pure PES membrane. The blend membranes had stronger protein adsorption resistance than pure PES membrane did. After washed using de-ionized water for 25 days, the blend membranes exhibited higher hydrophilicity and stronger protein adsorption resistance. This phenomenon was attributed to the further accumulation of SMA-g-MPEG additives on membrane surface in aqueous conditions. SMA-g-MPEGs can be well preserved in membrane near-surface and not lost during membrane washing due to their high molecular weight and comb-like architecture.  相似文献   

20.
In this study, effects of methanol, ethanol and 1‐propanol as variable nonsolvent additives (NSAs) on the morphology and performance of flat sheet asymmetric polyethersulfone (PES) membranes were investigated. The membranes were prepared from PES/Polyvinylpyrrolidone (PVP)/N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion. The obtained results indicate that with the addition of NSAs to the casting solution, the membrane morphology changes slowly from macrovoids to an asymmetric structure with finger‐like pores. By increasing the NSAs concentrations in the casting solution and decreasing their polarities, the membrane structure changes from finger‐like pores to sponge. The AFM and SEM images reveal that addition of NSA to the casting solution decreases the pore size of the prepared membranes and reduces the pure water flux and BSA solution flux, while increasing the protein rejection. Surface analysis of the membranes showed that mean pore size and surface porosity of the prepared membranes with NSAs in the casting solution are smaller compared with those of the membrane prepared with no NSA. Pure water flux and BSA solution flux through the membranes decrease and BSA rejection increases with increase in the concentration of NSAs and decrease in their polarity. Finally, it can be concluded that the Tg values of the PES membranes increase by addition of NSAs to the casting solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号