首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a broadband picosecond ultrasonics time resolved spectroscopy. Detection of picosecond coherent acoustic phonons using a wavelength continuum generation in a photonic crystal fiber (PCF) with femtosecond laser pulses is developed. Measurements are performed for selected wavelengths of a broad wavelength probe pulse within a bandwidth of 250 nm with an 825 nm center wavelength on two samples made of tungsten and of gallium arsenide.  相似文献   

2.
Picosecond laser ultrasonics uses femtosecond laser pulses for the generation and detection of acoustic pulses with a typical duration between few picoseconds and few hundreds of pico seconds. The shorter the duration of the acoustic pulse is, the more precisely could be made the measurements of the film thickness [C. Thomsen et al., Phys. Rev. B 34, 4129 (1986)] and the elastic modulus by pulse-echo method or through Brillouin scattering detection. In this short communication we report the results of the evaluation of the properties of nanoporous silicon oxide thin films which present potential low-k and thermal barrier properties and are also of great interest for the microelectronic industry to replace the traditional silicate glass films in order to decrease the resistance-capacitance transition delay in the VLSI circuits. Most of the studies that have been carried so far have treated the optical properties of such structures. We report the results of the evaluation of acoustic properties of nanoporous thin films.  相似文献   

3.
Péronne E  Perrin B 《Ultrasonics》2006,44(Z1):e1203-e1207
Acoustic solitons have been recently observed in different systems (Si, Sapphire, MgO, alpha-quartz). Such acoustic waves could lead to sub-picosecond acoustic pulses. In this paper, we report on the formation of acoustic solitons in a GaAs crystalline slab. A short picosecond acoustic pulse is generated by absorption of a femtosecond laser pulse in an aluminum thin film deposited on one side of the slab. This strain pulse travels through the sample up to the opposite side where it is detected by a time delayed laser pulse reflected by an aluminum transducer. We use interferometric detection to measure independently the real and imaginary parts of the relative change in optical reflectivity induced by the acoustic pulse. We find that, at low temperature and with a laser pump pulse energy of 10 nJ, an acoustic soliton clearly separates from the acoustic pulse in GaAs slab. The soliton shape is compared with numerical simulations for different excitation conditions. From the very unique properties of solitons, we infer a soliton pulse duration of about 2.3 ps which corresponds to a spatial extent of only 12 nm.  相似文献   

4.
We have studied the effect of wavelength change on picosecond acoustic pulses generated using a femtosecond laser. For the first time, we show that the pulse shape can be strongly influenced by the laser wavelength. The results are in excellent agreement with a calculation based on a thermoelastic model which connects them to significant changes in the piezo-optical constants. There are similarities between the present study and stress modulation spectroscopy, which allows us to ascribe the observations to interband transitions and suggests thus a new potentiality of picosecond ultrasonics.  相似文献   

5.
Interfaces between neighbouring materials are often subjected to diffusion processes which cause layers having gradually varying mechanical properties--like densities, Young's moduli or shear moduli--perpendicular to the surface or interface. In this investigation particular interest is drawn on the question how the propagation characteristics of bulk acoustic waves are affected by diffusion layers. The reflection and transmission behavior of bulk acoustic waves encountering a continuum having a spatially dependent sound velocity is discussed based on numerical simulations as well as on experimental verifications. The simulated results are part of an on-going project in which material properties of MEMS devices are investigated by short pulse laser acoustic methods. Mechanical waves are excited and detected thermoelastically using laser pulses of 70 fs duration. For metals this leads to wavelengths of 10-20 nm and the corresponding frequencies amount to 0.3-0.6 THz. In contrast to previous work done in this field in which diffusion effects are generally considered as undesirable phenomena, the deliberate realization of microstructures having well defined gradually varying material properties in one or more dimensions represents a goal of this investigation. For metallic thin film multilayers thermally induced diffusion processes have shown to be an easy and reliable technique for the realization of layered structures having continuously varying mechanical properties within several 10 nm. Among the experimental methods suitable for the in-depth profiling of submicron metallic thin films providing resolutions of several nanometers, are short pulse laser acoustic methods, Rutherford backscattering spectroscopy (RBS), and glow discharge optical emission spectroscopy (GDOES). Short pulse laser acoustic methods and RBS have the advantage to be nondestructive. The short pulse laser acoustic method is described in detail and RBS measurements are presented for verification purposes. Finally potential engineering applications like micro-machined spectrum analyzers, acoustic isolation layers, and band pass filters, operating at very high frequencies are presented.  相似文献   

6.
Vollmann J  Profunser DM  Dual J 《Ultrasonics》2002,40(1-8):757-763
This investigation deals with various new aspects of the sensitivity improvement of a pump-probe laser based acoustic method. A short laser pulse is used to excite a mechanical pulse thermo-elastically. Echoes of these mechanical pulses reaching the surface are causing a slight change of the optical reflectivity. The surface reflectivity is scanned versus time with a probe pulse. Thus the time of flight of the acoustic pulse is measured. The quantity to be measured i.e. the optical reflectivity change deltaR caused by acoustic pulses, is rather small. A set-up having an estimated sensitivity deltaR/R of about 10(-5) has shown to be sufficient to detect up to the fifth echo in a 50 nm aluminum film on sapphire substrate. A key challenge is the reduction of optical and electrical cross-talk between the excitation and the detection. Therefore the concepts of double-frequency modulation, cross-polarization, and balanced photodetection are implemented. Practical aspects like beam guiding, modulation techniques, beam focus minimization, and beam focus matching are discussed. Measurements for single- and multi-layer metallic films demanding higher sensitivity are presented.  相似文献   

7.
We study the features of excitation of acoustic waves by high-power microwave pulses in thin metal films bordering on liquid. Aluminum films with thicknesses 1–10 nm deposited onto a quartz substrate were used in experiments. It is shown theoretically that the absorption coefficient of microwaves is maximum for film thickness from 2 to 3 nm and the value of this maximum is determined by the dielectric permittivity of the bordering liquid. Theoretical calculations and experiments are performed for water and ethyl alcohol. The sound generation in a layered system quartz-aluminum film-liquid is analyzed with the help of the step-by-step approach. At the first step, microwave energy is absorbed in the film and heat is released. Then heat almost instantly diffuses into a liquid whose thermal expansion creates an acoustic signal. Profiles of acoustic signals excited in aluminum films by microwave pulses with a 5-ns duration and an energy of up to 1 mJ are experimentally detected. The most efficient transduction was observed for an aluminum film 3.5 nm thick.  相似文献   

8.
We present the results of testing a new thermoacoustic sensor designed to detect microwave pulses having durations from 3 to 120 ns at wavelengths of 0.8 and 3 cm. Operation of the sensor is based on the effect of generation of acoustic signals during absorption of microwave pulses in a radiotransparent substrate–absorber–liquid layered structure . A thin nanometer-thick film deposited on a substrate is used as an absorber. Microwaves are converted to an acoustic pulse in the film and the adjacent liquid. The pulse is received by a wideband acoustic receiver and then recorded by a digital oscilloscope. It is shown that for a pulse duration of 120 ns, the shape of the signal recorded by the thermoacoustic sensor completely corresponds to the signal of a tube-diode detector of microwave pulses. The response of the thermoacoustic sensor to shorter pulses (3 and 5 ns long) is a pulse with a duration of 18 ns which is determined by a limited frequency band of the acoustic receiver.  相似文献   

9.
Using the time-dependent Schrödinger equation we investigate the effect of different pulse sequences of two lasers on selective ionization in three-level systems driven by coherent radiation fields. It is assumed that inhomogeneous broadening as well as the radiative decay can be neglected during the laser pulses. We demonstrate to what an extent the selectivity given by the absorption or relaxation process can be increased by coherent interaction during the first step and different timing of the incoherent interaction during the second step of a two-step photoionization. A comparison is made with the rate-equation results. We could show that utilization of coherent excitation for high ionization selectivity is most efficient if the two laser pulses do not overlap.  相似文献   

10.
The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.  相似文献   

11.
用于超短激光脉冲检测的新型光电发射薄膜   总被引:6,自引:0,他引:6       下载免费PDF全文
Ag-Ba-O薄膜是金属超微位子埋藏于半导体基质中的全新型光电转换薄膜。它不含碱金属,有很好的稳定性,可以在大气中存放,再置入真空系统中不需要激话,就能产生足以检测皮秒级激光脉冲信号的光电子发射。在激光作用下有特殊的灵敏度。这种光电转换薄膜有很好的应用前景。  相似文献   

12.
陈安民  高勋  姜远飞  丁大军  刘航  金明星 《物理学报》2010,59(10):7198-7202
研究了超短超强激光脉冲与薄膜靶相互作用中产生的电子热发射.当超短激光脉冲与薄膜靶相互作用时,首先入射超短脉冲激光对吸收深度内的自由电子进行热激发,接下来热激发电子将能量传递到附近的晶格,再通过电子和晶格二体系的热传导,以及电子晶格间的热耦合,将能量传递到材料的内部.因此,电子在皮秒级甚至更短的时间内不能与晶格进行能量耦合,使电子温度超出晶格温度很多,电子热发射就变得非常明显了.用双温方程联合Richardson-Dushman方程的方法对飞秒脉冲激光照射金属靶的电子热发射进行了研究,结果发现电子热发射对飞  相似文献   

13.
Nanobumps and nanoholes have been formed in gold and silver films with various thicknesses on a dielectric substrate by strongly focused single nanosecond pulses of a Nd:YAG laser. An apertureless dielectric fiber probe and an aspherical lens with a numerical aperture of 0.5 were used to focus laser radiation into a diffraction-limited spot on the surface of gold and silver films, respectively. Atomic force and electron microscopy studies have demonstrated that the shape and dimension of nanostructures, as well as the threshold parameters of laser radiation for their formation, are determined by the thickness of a modified film (“size effect”) and by the duration of a laser pulse owing to the lateral heat conduction in films (nonlocal energy deposition effect). Mechanisms of the dynamic formation of such structures in metallic films by nanosecond laser pulses due to phase transformations of their material have been discussed.  相似文献   

14.
15.
Laser energy absorption results in significant heating of metallic nanoparticles and controlling the heating of nanoparticles is one of the essential stages of selective cell targeting. It is necessary to note that the laser action should be done by laser pulses with a wavelength that is strongly absorbed by the particles and it is important to select wavelengths that are not absorbed by the medium. Laser pulse duration must be chosen sufficiently short to minimize heat flow emitted from absorbing particles. Numerical calculations based on Mie theory were used to obtain the effect of laser wavelength and particle size on absorption factor for colloidal silver nanoparticles with radii between 5 and 50 nm. Calculations for acquiring temperatures under irradiations of pulsed KrF laser and pulsed Nd:YAG laser were performed. We showed that for low wavelengths of the laser, smaller nanoparticles have larger absorption efficiency compared to larger nanoparticles and in high wavelengths, temperature of all particles increased in the same way.  相似文献   

16.
Results are presented on the surface damage thresholds of ITO thin films induced by single- and multi-pulse laser irradiation at a pulse duration of 10 ps and a wavelength of 1064 nm. For multi-pulse ablation the incubation effect results in a reduction of the damage threshold, especially apparent at low pulse numbers and very small film thicknesses. The incubation effect attributes to the accumulation of defect sites and/or the storage of thermal stress-strain energy induced by the incident laser pulses. An incubation coefficient of S=0.82 has been obtained which is independent on the film thickness in the range of 10–100 nm. In practical applications, the incubation effect determines the laser patterning structure of ITO films while increasing the pulse overlapping rate. The width of the patterned line can be predicted by the proposed model involving the laser fluence, the overlapping rate and the incubation coefficient.  相似文献   

17.
We present an axisymmetric computational model to study the heating processes of gold nanoparticles, specifically nanorods, in aqueous medium by femtosecond laser pulses. We use a two-temperature model for the particle, a heat diffusion equation for the surrounding water to describe the heat transfer processes occurring in the system, and a thermal interface conductance to describe the coupling efficiency at the particle/water interface. We investigate the characteristic time scales of various fundamental processes, including lattice heating and thermal equilibration at the particle/surroundings interface, the effects of multiple laser pulses, and the influence of nanorod orientation relative to the beam polarization on energy absorption. Our results indicate that the thermal equilibration at the particle/water interface takes approximately 500 ps, while the electron-lattice coupling is achieved at approximately 50 ps when a 48×14 nm gold nanorod is heated to a maximum temperature of 1270 K with the application of a laser pulse having 4.70 J/m(2) average fluence. Irradiation by multiple pulses arriving at 12.5 ns time intervals (80 MHz repetition rate) causes a temperature increase of no more than 3 degrees during the first few pulses with no substantial changes during the subsequent pulses. We also analyze the degree of the nanorods' heating as a function of their orientation with respect to the polarization of the incident light. Lastly, it is shown that the temperature change of a nanorod can be modeled using its volume equivalent sphere for femtosecond laser heating within 5-15% accuracy.  相似文献   

18.
Picosecond acoustic pulses generated by femtosecond laser excitation of a metal film induce a transient current with subnanosecond rise time in a GaAs/Au Schottky diode. The signal consists of components due to the strain pulse crossing the edge of the depletion layer in the GaAs and also the GaAs/Au interface. A theoretical model is presented for the former and is shown to be in very good agreement with the experiment.  相似文献   

19.
频率啁啾激光场中锂原子的激发与态囚禁   总被引:1,自引:1,他引:0  
采用含时多态展开方法,对不同频率啁啾激光场中里德堡锂原子布居数的相干迁移特性进行了计算研究。结果表明:布居数跃迁几率对激光脉冲形状、激光场强度、啁啾率等参数非常敏感,在合适的激光参数下,可以实现布居数在四个量子态之间的完全迁移和量子态的囚禁。  相似文献   

20.
Absorption, electron-phonon coupling and heating of nanoparticles (NPs) under action of short laser pulses on NPs and their cooling after the end of laser action usually has nonlinear character. Nonlinear electron-phonon coupling under action of pico- and femtosecond pulses on metal NPs depends on electron and lattice parameters. Optical (absorption, scattering, extinction) and thermo-physical (coefficient of thermal conductivity, heat capacity, etc.) parameters of different materials of NPs (metals, oxides, semiconductors, etc.) and environments (water, liquids, dielectrics, etc.) depend on temperature and determine nonlinear dynamics of NPs heating and cooling. It is very important to take into account the temperature dependence of optical and thermophysical parameters of NPs and surrounding media under investigation of absorption of laser radiation, electron-phonon coupling, nanoparticle (NP) heating, heat transfer and its cooling after the end of laser pulse action. Theoretical modeling of the processes of laser-NP interaction taking into account temperature dependences of parameters of NPs and environments was carried out. Influence of temperature dependences of these parameters on values and dynamics of the processes is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号