首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiol-functionalized Fe3O4/SiO2 microspheres (Fe3O4/SiO2-SH) with high saturation magnetization (69.3 emu g–1), superparamagnetism, and good dispersibility have been prepared by an ethylene glycol reduction method in combination with a modified Stöber method. The as-prepared composite magnetic spheres are characterized with fourier transform infrared spectroscopy (FT-IR), zeta potential, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and superconducting quantum interference magnetometer, and tested in separation of Au(III) ions from aqueous solutions. The data for Au(III) adsorption on Fe3O4/SiO2-SH are analyzed with the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models, and the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. The adsorption behaviors of Au(III) on Fe3O4/SiO2-SH follow the Langmuir isotherm model, and the adsorption process conforms to the pseudo-second-order kinetic model. The maximum adsorption capacity of Au(III) on Fe3O4/SiO2-SH is 43.7 mg g–1. Acetate anions play an important role yet Cu(II) ions have little interference in the adsorption of Au(III) on the adsorbent. A satisfactory recovery percentage of 89.5% is acquired by using an eluent with 1 M thiourea and 5% HCl, although thiols have a high affinity to Au(III) ions based on the hard-soft acid-base (HSAB) theory by Pearson.  相似文献   

2.
This study presented an effective method to modify the surface chemical reactivity of a SiO2/Fe3O4 support. The unmodified SiO2/Fe3O4 support was prepared by the hydrolysis and condensation of tetraethoxysilane on the surface of hydrophilic Fe3O4 nanoparticles. These were then modified by a heat treatment in an ethanol/water solution under reflux. The resulting samples were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and transmission/scanning electron microscopy. The immobilization of a TiO2 nanocatalyst on both unmodified and modified supports was performed to investigate the effects of the modification of the magnetic silica support on the loading of a TiO2 nanocatalyst and the photocatalytic activity. The loading of TiO2 and the photocatalytic activity were both improved.  相似文献   

3.
以共沉淀法所制的工业铁硅球体催化剂(indus-FS)为原料,用改进的有机胺蒸气相传输转化法,得到了负载高分散铁的交织氧化硅纳米线球体催化剂(NW-FS),并用于费托合成反应.在所制纳米线催化剂中,原料催化剂中氧化硅在氧化铁诱导下成功地转变成纳米线交织微球载体,而氧化铁组分则高度分散在氧化硅纳米线上.用扫描电镜、透射电镜、X射线衍射、低温氮吸附、X射线光电子能谱和程序升温还原等方法对所得纳米线催化剂进行了表征.在费托合成中,纳米线铁硅催化剂由于其特殊的堆积结构所导致的低的扩散阻力和高的铁活性组分分散度,提高了低碳烯烃尤其是乙烯的选择性.纳米线铁硅催化剂上低碳产物(C2–C4)的烯烷比为3.3,高于母体工业催化剂的1.9.  相似文献   

4.

Nanocomposite of magnetic Fe3O4 nanoparticles and polypyrrole was prepared under sonication by a new chemical polymerization method during which Fe3O4 nanoparticles acted both as a pyrrole oxidant and as a component in the composite material. Synthesis of this nanocomposite was carried out in aqueous solution acidified to pH 2, a prerequisite for the formation of these types of material and to facilitate pyrrole oxidation by Fe3O4 nanoparticles. In this way, two kind of materials were produced: Fe3O4/PPy nanocomposite in which magnetite nanoparticles were dispersed in PPy matrix and Fe3O4-aggregates@PPy nanocomposite that exhibits structure in which aggregates of magnetite nanoparticles are surrounded by a layer of polymeric phase. In the latter case, the polymerization process took place in the presence of a surfactant. These nanocomposites were characterized by electron microscopy techniques, IR spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and thermogravimetry. Particular attention was focused on the study of the electrochemical properties of the formed composites. The composite of Fe3O4 and PPy exhibits reversible electrochemical behaviour upon oxidation. The electrode process of the polymeric component oxidation in organic solvents such as acetonitrile and dichloromethane is very similar to the process in an aqueous solution.

  相似文献   

5.
Iron oxide (Fe2O3) was utilized to enhance the electrochemical properties of SiO as a promising anode for Li-ion batteries. An SiO/Fe2O3 composite, composed of SiO coated with Fe2O3 nanoparticles, was synthesized by mechanical milling and characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The electrochemical properties of the SiO/Fe2O3 composite, SiO, and mechanically milled SiO as anodes for Li-ion batteries were then investigated. The SiO/Fe2O3 composite showed superior performance compared with the two Fe2O3-free SiO samples, including an increased initial coulombic efficiency, enhanced rate capability, and better capacity retention.  相似文献   

6.
Commercially, iron (α-Fe) and hematite (α-Fe2O3) powders were used for the synthesis of composite powders of Fe2O3/Fe type by mechanical milling. Several ratios of Fe2O3/Fe were chosen for the composite synthesis; the atomic percent of oxygen in the starting mixtures ranged from 21 to 46 %. The Fe2O3/Fe composite samples with various Fe/O ratios were milled for different milling times. The milled composite samples were subjected to the heat treatments in argon up to 900 °C. During the heat treatment at temperatures that do not exceed 550 °C, Fe3O4/Fe composite particles are formed by the reaction between the Fe2O3 and Fe. Further increase of the heat treatment up to 700 °C leads to the reaction of the Fe3O4/Fe composite component phases, resulting thus in the formation of FeO/Fe composite. The heat treatment up to 900 °C of the Fe2O3/Fe leads to the formation of a composite of FeO/Fe3O4/Fe independent of the milling time and Fe2O3/Fe ratios. The onset temperatures of the Fe3O4 and FeO formations decrease upon increasing the milling time. Another important aspect is that, in the case of the same milling time but with a large amount of iron into the composite powder the formations temperatures of Fe3O4 and FeO are also decreasing. The influence of the mechanical activation time, heat treatment temperature, and Fe/O ratio on the formation of the (Fe3O4, FeO)/Fe composite from Fe2O3+Fe precursor mixtures was studied by differential scanning calorimetry and X-ray diffraction techniques.  相似文献   

7.
Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.  相似文献   

8.
A mesoporous iron–titanium mixed-oxides@activated carbon(AC) fiber membrane was fabricated by an electrospinning method and applied to the treatment of phenol waste water. The physical and chemical properties of the composite fiber membrane were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, UV–Vis light diffuse reflectance spectroscopy (DRS), Raman spectroscopy, respectively. The results indicate that the composite nanofiber membrane is composed of α-Fe2O3, anatase TiO2 and activated carbon phases with a specific surface area of 231 m2 g–1 and narrow pore size distribution of 3–6 nm. DRS reveals that the composite membrane has high photons absorption from both ultraviolet light and visible light irradiation owing to the combination of Fe2O3, TiO2 and carbon. The prepared nano Fe2O3–TiO2@AC fiber membrane can act as an efficient reusable photocatalyst and adsorbent for 100% remo val of phenol pollutant. This hybrid technique is hopeful to be widely used in the treatment of various organic waste waters.  相似文献   

9.
The structural features and magnetic properties of composite materials Fe2O3-SiO2 consisting of γ-Fe2O3 nanoparticles in an amorphous porous matrix of SiO2 were considered. The studied samples were synthesized by the sol-gel method. The structure of γ-Fe2O3-SiO2 depending on the heating temperature was studied by electron microscopy, X-ray diffraction analysis, ESR and IR spectroscopy. Magnetic measurements were performed on a SQUID magnetometer in the range 2–350 K.  相似文献   

10.
A series of SiO2-Al2O3 composite oxides with different parameters of porous structure was synthesized via sol-gel process at a systematically varied pH (pH 2, 5, 7, 9, 11, 13), and characterized by transmission electron microscope, N2 adsorption-desorption measurements, X-ray powder diffraction, Fourier transform infrared spectroscopy, temperature-programmed desorption of ammonia and IR spectra of pyridine adsorption. The catalytic performance of SiO2-Al2O3 was investigated in the catalytic polymerization of tetrahydrofuran. All the SiO2-Al2O3 oxides are characterized by similar acidity but different porous properties. In the pH range of 7 to 9, the hierarchical pore system composed of mesopores and macropores is formed. Due to an enhanced accessibility of acid sites and easier diffusion of reacting molecules, the samples containing a hierarchical pore system of the catalysts show the highest yield of polytetrahydrofuran (about 48%) and an improved number-average molecular weight (Mn).  相似文献   

11.
《Solid State Sciences》2007,9(8):737-743
Magnetically separable TiO2/SiO2/Fe3O4 composites of different core (Fe3O4) diameters and silica contents have been prepared by sol–gel technique for both silica and titania coatings. Energy dispersive X-ray fluorescence (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET surface area analysis and scanning electron microscope (SEM) have been used for characterization of prepared samples. Photocatalytic activity of the prepared samples has been investigated by photodegradation of methyl orange. Obtained results have shown that 25–45 μm core diameter exhibits the maximum activity since it possesses a convenient surface area and light transmittance. Silica content has a significant effect on the activity of composite. Silica content of more than 10 wt% has reduced the catalyst activity because of the increase in particle diameter and reduction of surface area.  相似文献   

12.
Magnetic Fe3O4/SiO2 composite core–shell nanoparticles were synthesized, characterized, and applied for the surfactant‐assisted solid‐phase extraction of five benzodiazepines diazepam, oxazepam, clonazepam, alprazolam, and midazolam, from human hair and wastewater samples before high‐performance liquid chromatography with diode array detection. The nanocomposite was synthesized in two steps. First, Fe3O4 nanoparticles were prepared by the chemical co‐precipitation method of Fe(III) and Fe(II) as reaction substrates and NH3/H2O as precipitant. Second, the surface of Fe3O4 nanoparticles was modified with shell silica by Stober method using tetraethylorthosilicate. The Fe3O4/SiO2 composite were characterized by X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. To enhance their adsorptive tendency toward benzodiazepines, cetyltrimethylammonium bromide was added, which was adsorbed on the surface of the Fe3O4/SiO2 nanoparticles and formed mixed hemimicelles. The main parameters affecting the efficiency of the method were thoroughly investigated. Under optimum conditions, the calibration curves were linear in the range of 0.10–15 μgmL?1. The relative standard deviations ranged from 2.73 to 7.07%. The correlation coefficients varied from 0.9930 to 0.9996.  相似文献   

13.
An easy method in a solvothermal system has been developed to synthesize nanostructured magnetite (Fe3O4)-loaded functionalized carbon spheres (CSs) and cobalt ferrite (CoFe2O4). Surface-tunable CSs loaded with iron oxide (Fe3O4) nanoparticles were prepared using an acetylferrocene Schiff base (OPF), whereas spinel cobalt ferrite (CoFe2O4) was synthesized via metal complexes of a ferrocenyl Schiff base with phenol moiety (Co-OPF). The formed composite powder was investigated using X-ray powder diffraction, Raman spectrometry, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometry. It was found that most of the iron oxide nanoparticles were evenly distributed upon the surface of the CSs. Furthermore, the surface of the iron oxide-loaded CSs has large numbers of functional groups. Good saturation magnetization was achieved for the formed magnetic nanoparticles.  相似文献   

14.
Fe2O3-V2O5 mixed oxides were synthesized with solid-state dispersion (SSD) and coprecipitation methods. In addition, transition metal oxides such as CuO, NiO, and CO3O4 were successfully loaded on the synthesized catalyst (Fe2O3-V2O5) using the SSD method. The composite catalysts were inspected for their photocatalytic activities in degrading 2,4-dichlorophenol under UV light enforcement. The produced samples were analyzed using X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, diffuse reflectance spectroscopy, scanning electron microscopy, photoluminescence, and the Brunauer–Emmett–Teller method. The addition of transition metal oxides improved the photocatalytic activity of Fe2O3-V2O5 (SSD). 1CuO wt% Fe2O3-V2O5 exhibited the highest percentage of 2,4-dichlorophenol degradation (100%) and the highest reaction rate (1.83 mg/L min) in 30 min. This finding is attributed to the distribution of CuO.  相似文献   

15.
This article reports the synthesis of the poly(sodium 4-styrenesulfonate)-grafted Fe3O4/SiO2 particles via two steps. The first step involved magnetite nanoparticles (Fe3O4) homogeneously incorporated into silica spheres using the modified Stöber method. Second, the modified silica-coated Fe3O4 nanoparticles were covered with the outer shell of anionic polyelectrolyte by surface-initiated atom transfer radical polymerization. The resulted composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive microscopy (EDS), Fourier transform-infrared (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometer (VSM). The XRD results indicated that the surface modified Fe3O4 nanoparticles did not lead to phase change compared with the pure Fe3O4. TEM studies revealed nanoparticles remained monodisperse. The detection of sulfur and sodium signals was a convincing evidence that sodium 4-styrenesulfonate was grafted onto the surface of the magnetic silica in XPS analysis. Finally, super-paramagnetic properties of the composite particles, and the ease of modifying the surfaces may make the composites of important use in mild separation, enzyme immobilization, etc.  相似文献   

16.
采用水热法制备了中空短棒状纳米Fe2O3,并用超声分散法将其与纳米Al颗粒复合为单金属氧化基超级铝热剂.利用X射线粉末衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电镜及能量散射光谱仪(SEM-EDS)对样品进行表征.并运用差示扫描量热法(DSC)对比研究了超级铝热剂Al/Fe2O3、Al粉和纳米Fe2O3对环三亚甲基三硝胺(RDX)热分解特性的影响.结果表明:超级铝热剂的加入改变了RDX的热分解过程,并加剧了RDX的二次气相反应;随着超级铝热剂含量的增加,RDX的分解峰峰形发生了明显的改变;Al/Fe2O3、Al粉和Fe2O3对RDX热分解的作用主要表现为二次分解峰逐渐明显且峰温降低.  相似文献   

17.
Two important iron oxides:Fe3O4 and Fe2O3,as well as Fe3O4 and Fe2O3 nanoparticles mingling with Ag were successfully synthesized via a hydrothermal procedure.The samples were confirmed and characterized by X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The morphology of the samples was observed by transmission electron microscopy(TEM).The results indicated Fe3O4,Fe2O3,Ag/Fe3O4 and Ag/Fe2O3 samples all were nanoparticles with smaller sizes.The samples were modified on a glassy carbon electrode and their elctrocatalytic properties for p-nitrophenol in a basic solution were investigated.The results revealed all the samples showed enhanced catalytic performances by comparison with a bare glassy carbon electrode.Furthermore,p-nitrophenol could be reduced at a lower peak potential or a higher peak current on a glassy carbon electrode modified with Ag/Fe3O4 or Ag/Fe2O3 composite nanoparticles.  相似文献   

18.
To obtain a recyclable surface-enhanced Raman scattering (SERS) material, we developed a composite of Fe3O4\SiO2\Ag with core\shell\particles structure. The designed particles were synthesized via an ultrasonic route. The Raman scattering signal of Fe3O4 could be shielded by increasing the thickness of the SiO2 layer to 60 nm. Dye rhodamine B (RB) was chosen as probe molecule to test the SERS effect of the synthesized Fe3O4\SiO2\Ag particles. On the synthesized Fe3O4\SiO2\Ag particles, the characteristic Raman bands of RB could be observed when the RB solution was diluted to 5 ppm (1×10−5 M). Furthermore, the synthesized particles could keep their efficiency till four cycles.  相似文献   

19.
Reduced graphene nanosheets/Fe2O3 nanorods (GNS/Fe2O3) composite has been fabricated by a hydrothermal route for supercapacitor electrode materials. The obtained GNS/Fe2O3 composite formed a uniform structure with the Fe2O3 nanorods grew on the graphene surface and/or filled between the graphene sheets. The electrochemical performances of the GNS/Fe2O3 hybrid supercapacitor were tested by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests in 6 M KOH electrolyte. Comparing with the pure Fe2O3 electrode, GNS/Fe2O3 composite electrode exhibits an enhanced specific capacitance of 320 F g−1 at 10 mA cm−2 and an excellent cycle-ability with capacity retention of about 97% after 500 cycles. The simple and cost-effective preparation technique of this composite with good capacitive behavior encourages its potential commercial application.  相似文献   

20.
The sodium‐ion storage properties of FeS–reduced graphene oxide (rGO) and Fe3O4‐rGO composite powders with crumpled structures have been studied. The Fe3O4‐rGO composite powder, prepared by one‐pot spray pyrolysis, could be transformed to an FeS‐rGO composite powder through a simple sulfidation treatment. The mean size of the Fe3O4 nanocrystals in the Fe3O4‐rGO composite powder was 4.4 nm. After sulfidation, FeS nanocrystals of size several hundred nanometers were confined within the crumpled structure of the rGO matrix. The initial discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders were 740 and 442 mA h g?1, and their initial charge capacities were 530 and 165 mA h g?1, respectively. The discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders at the 50th cycle were 547 and 150 mA h g?1, respectively. The FeS‐rGO composite powder showed superior sodium‐ion storage performance compared to the Fe3O4‐rGO composite powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号