首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The consideration of the gyromagnetic properties of multilayer structures with one or more magnetically active components shows that the application of a magnetic field to such structures imparts magnetically controlled optical properties to them. The effect of a magnetic field on the reflection coefficient of the multilayer structures manifests itself in two phenomena: a shift of the maximum of the spectral curve of the resonant reflection coefficient and a change (increase or decrease) in the bandwidth of this curve. The more pronounced of these two effects is the change in the bandwidth of the spectral curve of the reflection coefficient. The orientation (transverse or longitudinal) of the magnetic field applied to the multilayer structure determines important specific features of these effects. Calculation performed for two types of multilayer structures (Y3Fe5O12?Gd3Ga5O12 and Y3Fe5O12?SiO2) shows the possibility of their practical use, for example, in fiber optics.  相似文献   

2.
3.
New magnetic structures such as multilayer systems of magnetic nanoislands being alternating layers of nanoislands of various magnets have been proposed. The electric, magnetic, and magnetooptical properties of the systems have been studied. The magnetoresistance of ~2% related to the anisotropic effect has been revealed. In multilayer structures of magnetic nanoislands, a unidirectional axis of predominant magnetization has been found, which changes its orientation depending on the structure parameters. The magnetic field required to reorient the axis in the opposite direction has been estimated to be 2 kOe < H A < 20 kOe. The periodic multilayer structures of magnetic nanoislands are very sensitive to hyperweak magnetic fields (to 10?6 Oe).  相似文献   

4.
The formation of three dimensional (3D) photonic microstructures by the locally selective dissolution of metal clusters embedded in dielectric multilayer stacks is presented. Dissolution of clusters is performed by the simultaneous application of electric field and temperature. The produced photonic structures show a highly tailorable optical behavior that combines the interferential effects of multilayer stacks and the surface plasmon resonance of non-dissolved metal clusters. Due to its feasibility and the possibility to widely modify the optical properties of the resulting structures, the current approach represents a promising method for the production of novel components based on 3D-metallodielectric photonic structures.  相似文献   

5.
Magnetic reversal mechanism of the Sub/AlN5 nm/[CoPt2 nm/AlN5 nm]5 nano multilayer film, which shows strong perpendicular magnetic anisotropy (Ku=6.7×106 erg/cm3), has been studied. The angle-dependent magnetic hysteresis loops of this highly perpendicular anisotropic CoPt/AlN multilayer film were measured in the present work, applying a magnetic field along different angles φ with respect to the film normal. It demonstrates that the magnetic reversal of the CoPt ultrathin layers in the CoPt/AlN multilayer film is occurred by the reversible magnetization rotation and the irreversible displacement of domain walls. The φ-dependent part of coercive field is resulted from the internal stress according to the Kondorsky and Kersten model. The φ-independent part of coercive field implies some random and isotropy pinning centers (e.g., vacancies, dislocations, grain boundaries) in the ultrathin CoPt layers. Our work is useful for coercivity control of metal/ceramics layered structures, in particular the perpendicular magnetic tunneling junctions.  相似文献   

6.
The magnetic and magnetooptical properties of spin-tunneling multilayer permalloy-silicon carbide nanoheterostructures deposited by rf sputtering have been studied. Magnetometric and magnetooptical methods are used to show that the magnetic-semiconducting nanostructures have a complex magnetic structure and to track the evolution of the magnetic properties of these structures as functions of the magnetizing field and the thickness and sequence order of ferromagnetic and semiconducting layers in them. The induction response and the field and orientation dependences of the transversal Kerr effect are found to have anomalies. The experimental results are interpreted under the assumption that there is exchange interaction between the ferromagnetic and semiconducting layers through a thin magnetically ordered transition layer formed inside the interface.  相似文献   

7.
Metamaterials are engineered composite materials offering unprecedented control of wave propagation. Despite their complexity, effective properties can frequently be extracted by conceptualizing them as homogeneous and isotropic media with dispersive electric permittivity and magnetic permeability. For an ideal isotropic medium, strong dispersion in these properties causes wave and field vectors to form a left‐handed (E,H,k)‐frame involving backward waves, and offering control of quantities like the refractive index which may become negative. Experimental evidence exists from microwaves to the visible. Applications include sub‐wavelength‐resolution imaging, invisibility cloaking, plasmonics‐based lasers, metananocircuits, and omnidirectional absorbers. As the engineered sub‐structures must be smaller than their design wavelength, micro/nanomanufacturing is exploited from primary pattern generation over lithography to templating and molecular beam epitaxy. 3D metamaterials have been made by stacking of layers, multilayer structuring, and 3D primary pattern generation. Theory shows that full properties may build up over one or a very few layers.  相似文献   

8.
亚铁磁材料因具有反铁磁排列的子晶格磁矩而表现出诸多丰富的物理性质,在磁信息存储和逻辑领域具有广阔的应用前景.本文采用磁控溅射方法在热氧化的硅基片上制备了Pt/GdFeCo(t)/Pt多层膜,系统研究了亚铁磁GdFeCo厚度对多层膜的表面形貌、结构、磁性以及反常霍尔效应(AHE)的影响.结构测试表明薄膜表面粗糙度较小,且GdFeCo层为非晶态;实验中利用GdFeCo层厚度可有效控制Gd元素含量,从而调控GdFeCo趋近反铁磁态特性的磁矩补偿点;通过重金属强自旋轨道耦合效应(SOC)和非晶态亚铁磁薄膜面内压应力,实现了良好垂直各向异性(PMA);进一步阐明了亚铁磁薄膜中磁性和反常霍尔效应的内在产生机制以及磁矩补偿点与温度的内在关系.这些结果为构建新一代低功耗自旋电子器件奠定基础.  相似文献   

9.
A Fe3O4 silicon oil-based ferrofluid (FF) was prepared and the viscosity properties of the FFs were investigated by a rotating viscometer and a torsional oscillation cup viscometer, respectively. Experimental results show that the viscosity of the FFs decreases with increasing temperature, and increases with increasing magnetic field intensity due to the existence of the magnetic particles. The hysteresis curve of the viscosity–magnetic field shows that the formation and destruction of chain-like or drop-like structures has obvious effect on the viscosity of the FFs. When the field is relatively strong, the viscosity at the decreasing stage is higher than that at the increasing stage. In contrast, when the field is relatively weak, the viscosity at the decreasing stage is slightly lower than that at the increasing stage. In addition, the relation between viscosity of the FFs and time under the magnetic field shows that time is an effective factor in the evolution of the magnetically induced structures.  相似文献   

10.
Interaction of traveling electromagnetic waves with MBE-grown Fe/Cr multilayer nanostructures is studied. Measurements are made in the frequency range 5.7–12.5 GHz at magnetic fields of up to 32 kOe. It is found that the dependence of the microwave transmission coefficient on the external magnetic field intensity is similar to the field dependence of the dc giant magnetoresistive effect. As a result of the interaction, the wavenumber varies in proportion to the electrical resistance of the structure. A simulation of the magnetic fields shows that the microwave currents flow largely across the multilayer nanostructure (normally to the layers).  相似文献   

11.
We have demonstrated an optimization approach in order to obtain desired magnetophotonic crystals (MPCs) composed of a lossy magnetic layer (TbFeCo) placed within a multilayer structure. The approach is an amalgamation between a 4×4 transfer matrix method and a genetic algorithm. Our objective is to enhance the magneto-optic Kerr effect of TbFeCo at short visible wavelength of 405 nm. Through the optimization approach, MPC structures are found meeting definite criteria on the amount of reflectivity and Kerr rotation. The resulting structures are fitted more than 99.9% to optimization criteria. Computation of the internal electric field distribution shows energy localization in the vicinity of the magnetic layer, which is responsible for increased light-matter interaction and consequent enhanced magneto-optic Kerr effect. Versatility of our approach is also exhibited by examining and optimizing several MPC structures.  相似文献   

12.
The application of photonic band gap (PBG) structures to a microwave switch is studied. For this purpose, a frequency selective multiplexer is implemented combining one-dimensional PBG structures. The tunability of microwave photonic crystals (PCs) with ferrites and/or ferroelectric materials is then considered. A theoretical calculation performed on a two-dimensional hexagonal lattice of air rods embedded in a rectangular ferrite slab shows that the PBG is well tunable with external magnetic field parallel to the air rod. We have also discussed the implementation of microwave switch combining the tunability of PBG structures of ferrite and/or ferroelectric materials and the frequency selective nature of PBG multiplexer.  相似文献   

13.
We study experimentally the current-driven magnetic excitations in symmetric Co/Cu/Co nanopillars. In contrast with all the previous observations where the current of only one polarity is capable of exciting a multilayer system saturated by an externally applied magnetic field, we observe that both polarities of the applied current trigger excitations in a symmetric multilayer. This may indicate that in symmetric structures the current propels high-frequency magnetic oscillations in all magnetic layers. We argue, however, that only one layer is excited in our multilayers but, interestingly, currents of opposite polarities excite different layers. This hypothesis is supported by modeling the spin accumulation in symmetric magnetic multilayers.  相似文献   

14.
脉冲磁场下水热法制备Cr掺杂ZnO稀磁 半导体晶体   总被引:1,自引:0,他引:1       下载免费PDF全文
本文以ZnCl2, CrCl3. 6H2O和氨水缓冲溶液为原料, 在4T脉冲磁场下水热法制备了Cr掺杂ZnO稀磁半导体晶体, 通过X射线衍射分析、扫描电子显微镜观察及采用振动样品磁强计进行磁性分析等, 探讨了脉冲磁场对其微观结构及磁性能的影响. 结果表明: Cr掺杂ZnO稀磁半导体晶体仍保持ZnO的六方纤锌矿结构, 脉冲磁场具有促进晶粒生长及取向排列的作用, 4T脉冲磁场条件下合成的Cr掺杂ZnO稀磁半导体具有良好的室温铁磁性, 其饱和磁化强度(Ms)为0.068 emu/g, 而无脉冲磁场情况下制备的样品室温下呈顺磁性, 并且, 脉冲磁场下制备将稀磁半导体的居里温度提高了16 K.  相似文献   

15.
MAGIC (MAG-netic Intelligent Compound) is a solidified magnetic ferrofluid (MF) containing both magnetic particles (MPs) and abrasive particles (APs, nonmagnetic) of micron size. The distribution of APs in MAGIC can be controlled by applying a magnetic field during cooling process of MAGIC fluid. In this paper, the influences of magnetic field, size and concentration of particles on the final structures of MPs and the distributions of APs in MAGIC fluid are preliminarily investigated using Stokesian dynamic (SD) simulation method. Simulation results show that MPs prefer to form strip-like structures in MAGIC fluid, the reason for this phenomenon is mainly attributed to the strong dipolar interactions between them. It is also found that MPs prefer to form big agglomerations in weak magnetic field while chains and strip-like structures in strong magnetic field; no long chains or strip-like structures of MPs are observed in low-concentration MAGIC fluid; and for big-size MPs, pure wall-like structures are formed. Evaluation on the distribution of APs with uniformity coefficient shows that strong magnetic field, high concentration and small-size particles can induce more uniform distribution of APs in MAGIC fluid, the uniformity of APs in MAGIC is about 10% higher than that in normal grinding tools.  相似文献   

16.
由于丰富的拓扑量子效应及巨大的潜在应用价值,拓扑材料逐渐成为凝聚态物理前沿的研究材料体系。其中,作为与石墨烯具有相似电子结构的材料,三维拓扑半金属吸引了越来越多的研究兴趣。目前已知的拓扑半金属大多为非磁性的,而磁性拓扑半金属数量有限,与非磁性拓扑半金属相比较,研究开展的还比较少。磁性与拓扑之间的相互作用能够导致非常规的物理性质,如反常霍尔效应甚至量子反常霍尔效应等。此外,在一些具有特殊磁结构的拓扑半金属中,施加外磁场能够调制其自旋结构,从而影响其拓扑能带结构。在该综述中,笔者将详细介绍利用外磁场在 EuCd2Pn2 (Pn = As, Sb) 反铁磁半金属材料中通过调制自旋结构从而改变晶体结构对称性来诱导拓扑相变。此外,笔者也将简单介绍包括 GdPtBi 和 MnBi2Te4 在内的几个相关材料。该综述中讨论的外磁场调控的磁交换诱导的拓扑相变不仅有望应用于拓扑器件,也有助于为理解磁性与拓扑态之间的紧密关联提供新的线索,对于设计新的磁性拓扑材料有启发意义。综述最后,笔者对发展磁性拓扑半金属做了一些简单展望。  相似文献   

17.
Polarized neutron scattering experiments have demonstrated that Dy/Y multilayer structures possess a coherent spin helix with a preferable chirality induced by the magnetic field. The average chirality, being proportional to the difference in the left- and right-handed helix population numbers, is measured as a polarization-dependent asymmetric part of the magnetic neutron scattering. The magnetic field applied in the plane of the sample upon cooling below T(N) is able to repopulate the otherwise equal population numbers for the left- and right-handed helixes. The experimental results strongly indicate that the chirality is caused by Dzyaloshinskii-Moriya interaction due to the lack of the symmetry inversion on the interfaces.  相似文献   

18.
The influence of an electric field on the ferromagnetic resonance (FMR) in a multilayer magnetic system consisting of two magnetic layers separated by a thin nonmagnetic interlayer has been investigated. It has been shown that, upon the excitation of magnetization oscillations by a microwave magnetic field, the eigenfrequencies of the ferromagnetic resonance depend on the stationary electric field applied in the plane of the layers. It has also been demonstrated that, in this system, high-frequency magnetization oscillations can be excited by an electric microwave field. The results of the investigation of the polarization properties of the excitation mechanism indicate that this effect can be observed experimentally.  相似文献   

19.
A new neutron spin directional coupler in a magnetic multilayer waveguide is proposed. Quantum interference between neutron spin states in the latter structure will take place. The proposed structure has spin switching properties. It is shown that this kind of structures can be realized in magnetic spin-switches.  相似文献   

20.
The use of a pulsed magnetic field for studies on frequency characteristics of the magnetoelectric (ME) effect in multilayer composite structures is described. The method is based on the excitation of a ferrite-lead zirconate titanate multilayer with short magnetic field pulses, followed by the measurement and Fourier analysis of the ME response signal. It is shown that the ME voltage coefficient αE generally decreases as the frequency increases from 1 kHz to 1 MHz except (i) at some discrete frequencies where the coefficient increases by an order of magnitude due to electromechanical resonance in the structure and (ii) a local maximum at 2-4 kHz in αE vs. frequency due to relaxation processes caused by the conductivity of individual layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号