首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
Wang RK  Ma Z 《Optics letters》2006,31(20):3001-3003
We present a new, simple method to suppress texture pattern artifacts induced by the optical heterogeneity of tissues to improve the performance of flow imaging for real-time phase-resolved optical Doppler tomography. The method performs transverse scanning of the probe beam in the forward and then reverse directions, and it takes average of the spatial phase changes between them to obtain the final velocity image. It relies on the fact that the phase changes between successive axial scans due to the optical heterogeneity of the sample are time independent, while those due to the moving particles are time dependent. We experimentally demonstrate this method by real-time imaging of a flow phantom.  相似文献   

2.
We describe a novel optical system for bidirectional color Doppler imaging of flow in biological tissues with micrometer-scale resolution and demonstrate its use for in vivo imaging of blood flow in an animal model. Our technique, color Doppler optical coherence tomography (CDOCT), performs spatially localized optical Doppler velocimetry by use of scanning low-coherence interferometry. CDOCT is an extension of optical coherence tomography (OCT), employing coherent signal-acquisition electronics and joint time-frequency analysis algorithms to perform flow imaging simultaneous with conventional OCT imaging. Cross-sectional maps of blood flow velocity with <50-microm spatial resolution and <0.6-mm/s velocity precision were obtained through intact skin in living hamster subdermal tissue. This technology has several potential medical applications.  相似文献   

3.
We have developed a novel phase-resolved optical coherence tomography (OCT) and optical Doppler tomography (ODT) system that uses phase information derived from a Hilbert transformation to image blood flow in human skin with fast scanning speed and high velocity sensitivity. Using the phase change between sequential scans to construct flow-velocity imaging, this technique decouples spatial resolution and velocity sensitivity in flow images and increases imaging speed by more than 2 orders of magnitude without compromising spatial resolution or velocity sensitivity. The minimum flow velocity that can be detected with an axial-line scanning speed of 400 Hz and an average phase change over eight sequential scans is as low as 10 microm/s, while a spatial resolution of 10 microm is maintained. Using this technique, we present what are to our knowledge the first phase-resolved OCT/ODT images of blood flow in human skin.  相似文献   

4.
We utilized a complimentary metal oxide semiconductor video camera for fast flow imaging with the laser Doppler technique. A single sensor is used for both observation of the area of interest and measurements of the interference signal caused by dynamic light scattering from moving particles inside scattering objects. In particular, we demonstrate the possibility of imaging the distribution of the moving red blood cell concentration. This is a first step toward laser Doppler imaging without scanning parts, leading to a much faster imaging procedure than with existing mechanical laser Doppler perfusion imagers.  相似文献   

5.
光学多普勒层析三维矢量测速方法研究   总被引:1,自引:0,他引:1  
光学多普勒层析术(ODT)是一种高分辨、非侵入的生物医学成像手段,能同时得到组织的结构信息和组织内血管的流速信息.提出了一种新型的基于相位分辨技术的ODT三维矢量测速方法.在ODT系统样品臂的准直镜和聚焦透镜之间加入窄带相位片,形成三个不同的相位延迟,通过计算多普勒频移和不同相位延迟下的多普勒展宽,可得到毛细管内的三维矢量流场分布.对已知浓度的聚苯乙烯溶液进行了一系列不同角度和不同流速的实验,结果证明这种新型的ODT矢量测速方法可以较精确的实现三维矢量流速的测量.  相似文献   

6.
超声动态向量血流成像的产品化实现   总被引:1,自引:1,他引:0  
传统超声彩色多普勒成像测量的是血流沿超声传播方向上的速度分量,故无法得到垂直于超声传播方向的血流。向量血流成像是一种更加先进的超声血流成像技术。它不受角度限制,可以直接计算出血流速度的大小和方向。本文总结了现有多种超声向量血流成像技术的特点和发展情况,并从产品化实现的角度分析了各项技术的优缺点。从超声系统发射接收、血流成像、向量速度方向合成、显示等几个方面详述了迈瑞超声向量血流成像技术产品化实现过程中遇到的主要问题及解决方案。实验采用了中科院声学所研制的超声多普勒仿血流体模,通过向量血流成像和脉冲多普勒成像分别测量体模的仿血流速度。将向量血流成像直接计算出来的速度值与脉冲多普勒经过角度校正得到的速度进行对比。在不同条件下,经过多次测量,二者的平均相对误差均在10%以内。  相似文献   

7.
Centreline blood velocity and exterior wall motion were measured in the descending aorta of humans using an oesophageal probe, a pulsed ultrasound Doppler velocity meter and an ultrasonic echo tracking system. The development of a method for easily measuring haemodynamics in the thoracic region using an oesophageal probe will provide an essentially non-invasive method for the assessment of cardiac function and the nature of blood vessels in that region. Detailed anatomical studies of the thorax were conducted by cross-sectioning of the thorax of a cadaver. Blood velocity waveforms were recorded from the descending aorta both during rest and exercise. In one volunteer, the peak centreline velocity increased from a resting value of approximately 30 cm s-1 to an exercise value of approximately 50 cm s-1. Vessel diameter waveforms similar to those for pressure were also recorded showing diameter changes of 1.8 mm. The accuracy and resolution of the technique would be improved by multicrystal probes and multigate ultrasonic flowmeters allowing for accurate calculation of the Doppler angle, imaging of vascular flow regions, and measurement of pulse wave velocity.  相似文献   

8.
An optical Doppler tomography (ODT) system that permits imaging of fluid flow velocity in highly scattering media is described. ODT combines Doppler velocimetry with the high spatial resolution of low-coherence optical interferometry to measure fluid flow velocity at discrete spatial locations. Tomographic imaging of particle flow velocity within a circular conduit submerged 1 mm below the surface in a highly scattering phantom of Intralipid is demonstrated.  相似文献   

9.
We have previously reported initial clinical results of a novel blood velocity imaging technique utilizing a two-dimensional correlation search applied to consecutively acquired echoes. In this paper, we describe both the physical principles underlying this technique and test tank experiments which define its performance under a variety of conditions. The results indicate that, unlike Doppler flow imaging systems, this technique defines the flow velocity vector in two dimensions and is not subject to aliasing.  相似文献   

10.
Li X  Ko TH  Fujimoto JG 《Optics letters》2001,26(23):1906-1908
We describe a miniature fiber-optic Doppler imaging catheter for integrated functional and structural optical coherence tomography (OCT) imaging. The Doppler catheter can map blood flow within a vessel as well as image vessel wall structures. A prototype Doppler catheter has been developed and demonstrated for measuring the intraluminal velocity profile in a vessel phantom (conduit). A simple mathematical model is demonstrated to estimate the total flow rate. This estimation technique also enables the spatial range of flow measurements to be extended by approximately two times the normal OCT image-penetration depth. The Doppler OCT catheter could be a powerful device for cardiovascular imaging.  相似文献   

11.
Self-referenced Doppler optical coherence tomography   总被引:1,自引:0,他引:1  
Yazdanfar S  Izatt JA 《Optics letters》2002,27(23):2085-2087
Doppler optical coherence tomography (DOCT) allows simultaneous micrometer-scale resolution cross-sectional imaging of tissue structure and blood flow. We demonstrate a fiber-optic polarization-diversity-based differential phase contrast DOCT system as a method to perform self-referenced velocimetry in highly scattering media. Using this strategy, we reduced common-mode interferometer noise to <1 Hz and improved Doppler estimates in a scattering flow phantom by a factor of 5.  相似文献   

12.
We present a fiber-based, low-coherence interferometer that significantly reduces phase noise by incorporating a second, narrowband, continuous-wave light source as a phase reference. By incorporating this interferometer into a Doppler OCT system, we demonstrate significant velocity noise reduction in reflective and scattering samples using processing techniques amenable to real-time implementation. We also demonstrate 90% suppression of velocity noise in a flow phantom.  相似文献   

13.
The objective of this study was to compare the measuring results of a fiber‐optical probe based on a modified spatial filtering technique with given size distributions of different test powders and also with particle velocity values of laser Doppler measurements. Fiber‐optical spatial filtering velocimetry was modified by fiber‐optical spot scanning in order to determine simultaneously the size and the velocity of particles. The fiber‐optical probe system can be used as an in‐line measuring device for sizing of particles in different technical applications. Spherical test particles were narrow‐sized glass beads in the range 30–100 μm and irregularly shaped test particles were limestone particles in the range 10–600 μm. Particles were dispersed by a brush disperser and the measurements were carried out at a fixed position in a free particle‐laden air stream. Owing to the measurement of chord lengths and to the influence of diffraction and divergent angle, the probe results show differences from the given test particle sizes. Owing to the particle‐probe collisions, the mean velocity determined by the probe is smaller than the laser Doppler mean velocity.  相似文献   

14.
We propose an approach for absolute velocity measurement where the use of a beam displacer provides two orthogonal linearly polarized beams to probe the sample simultaneously at two different incidence angles. The approach helps remove the cross talk image and facilitates single detector-based Fourier domain Doppler velocity measurement. The system has been characterized by quantifying absolute flow velocity in a flow phantom.  相似文献   

15.
Doppler optical coherence tomography (OCT) can image tissue structure and blood flow at micrometer-scale resolution but has limited imaging depth. We report a novel, linear-scanning, needle-based Doppler OCT system using angle-polished gradient-index or ball-lensed fibers. A prototype system with a 19-guage (diameter of approximately 0.9 mm) echogenic needle is constructed and demonstrates in vivo imaging of bidirectional blood flow in rat leg and abdominal cavity. To our knowledge, this is the first demonstration of Doppler OCT through a needle probe in interstitial applications to visualize deeply situated microcirculation.  相似文献   

16.
Since significant ocular differences in both anatomical structure and optical properties exist between rodents and humans, clinical imaging devices for human use are not suitable for use on rodents. In this study, we develop a contact probe with a flexible surface that can closely fit the rodent cornea for fundus imaging with a confocal scanning laser ophthalmoscope. Both Zemax simulation and in vivo fundus imaging demonstrate that this contact probe can significantly improve both the imaging quality and the operational convenience.  相似文献   

17.
光学相干层析多普勒成像功能拓展研究   总被引:8,自引:0,他引:8  
光学多普勒成像(Optical Doppler tomography,ODT)是一种结合了光学相干层析成像技术(Opticalcoherence tomography,OCT)和多普勒流速仪的非侵入、非接触的成像技术,能够实现对高散介质组织内部的血管分布和血液流速的探测。阐述了基于数字希尔伯特变换的相位分离多普勒光学相干层析成像技术的工作原理,并且通过对玻璃毛细管和生物芯片微通道管中聚苯乙烯溶液流速的实验测量,准确测量管内微粒缓慢移动时的多普勒频移量,获得了玻璃管内和生物芯片微通道管中流速分布曲线,证实了所提方法的可行性。获取的多普勒图像具有较高的空间分辨力和速度分辨力,在未来的临床应用中有潜在的应用价值。  相似文献   

18.
We report the development of an optical technique for noninvasive imaging of in vivo blood flow dynamics and tissue structures with high spatial resolution (2-10 microm) in biological systems. The technique is based on optical Doppler tomography (ODT), which combines Doppler velocimetry with optical coherence tomography to measure blood flow velocity at discrete spatial locations. The exceptionally high resolution of ODT permits noninvasive in vivo imaging of both blood microcirculation and tissue structures surrounding the vessel, which has significance for biomedical research and clinical applications. Tomographic imaging of in vivo blood flow velocity in the chick chorioallantoic membrane and in rodent skin is demonstrated.  相似文献   

19.
超声粒子图像测速技术及应用   总被引:1,自引:0,他引:1  
心血管疾病的产生与动脉血流的流动状况密切相关。然而,目前普遍应用的超声多普勒成像技术不能精确测量复杂血流流场信息。本文提出了一种基于超声造影微泡的超声全流场粒子图像测速技术,能够获得多维流速速度信息,且不依赖于声束与速度向量之间的夹角。本文首先着重阐述了超声全流场粒子测速技术的基本原理以及系统组成,并对直管流和旋转流场流体动力学特性进行了实验测试研究,实验结果表明本技术能够测量全流场速度,并可作为表征复杂血流流场的有力手段。   相似文献   

20.
We demonstrate extended axial flow velocity detection range in a time-domain Doppler optical coherence tomography (DOCT) system using a modified Kasai velocity estimator with computations in both the axial and transverse directions. For a DOCT system with an 8 kHz rapid-scanning optical delay line, bidirectional flow experiments showed a maximum detectable speed of >56 cm/s using the axial Kasai estimator without the occurrence of aliasing, while the transverse Kasai estimator preserved the approximately 7 microm/s minimum detectable velocity to slow flow. By using a combination of transverse Kasai and axial Kasai estimators, the velocity detection dynamic range was over 100 dB. Through a fiber-optic endoscopic catheter, in vivoM-mode transesophageal imaging of the pulsatile blood flow in rat aorta was demonstrated, for what is for the first time to our knowledge, with measured peak systolic blood flow velocity of >1 m/s, while maintaining good sensitivity to detect aortic wall motion at <2 mm/s, using this 2D Kasai technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号