首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 238 毫秒
1.
In this paper, we consider a three dimensional quantum Navier‐Stokes‐Poisson equations. Existence of global weak solutions is obtained, and convergence toward the classical solution of the incompressible Navier‐Stokes equation is rigorously proven for well prepared initial data. Furthermore, the associated convergence rates are also obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The large time behavior of solutions to the compressible Navier‐Stokes equations around the motionless state is considered in a cylinder under the slip boundary condition. It is shown that if the initial data are sufficiently small, the global solution uniquely exists and the large time behavior of the solution is described by a superposition of one‐dimensional nonlinear diffusion waves and a diffusive rigid rotation.  相似文献   

3.
In this study, we consider a viscous compressible model of plasma and semiconductors, which is expressed as a compressible Navier‐Stokes‐Poisson equation. We prove that there exists a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces in bounded domain, provided that the ratio of the electron/ions mass is appropriately small. Moreover, the zero‐electron‐mass limit of the strong solutions is rigorously verified. The main idea in the proof is to split the original equation into 4 parts, a system of stationary incompressible Navier‐Stokes equations with large forces, a system of stationary compressible Navier‐Stokes equations with small forces, coupled with 2 Poisson equations. Based on the known results about linear incompressible Navier‐Stokes equation, linear compressible Navier‐Stokes, linear transport, and Poisson equations, we try to establish uniform in the ratio of the electron/ions mass a priori estimates. Further, using Schauder fixed point theorem, we can show the existence of a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces. At the same time, from the uniform a priori estimates, we present the zero‐electron‐mass limit of the strong solutions, which converge to the solutions of the corresponding incompressible Navier‐Stokes‐Poisson equations.  相似文献   

4.
We consider the steady compressible Navier–Stokes equations of isentropic flow in three‐dimensional domains with several exits to infinity with prescribed pressure drops. On the one hand, when each exit is supposed to contain a cone inside, we shall construct bounded energy weak solution for adiabatic constant γ>3. On the other hand, when the exits do not open sufficiently rapidly, we shall prove a non‐existence result. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper we derive a probabilistic representation of the deterministic three‐dimensional Navier‐Stokes equations based on stochastic Lagrangian paths. The particle trajectories obey SDEs driven by a uniform Wiener process; the inviscid Weber formula for the Euler equations of ideal fluids is used to recover the velocity field. This method admits a self‐contained proof of local existence for the nonlinear stochastic system and can be extended to formulate stochastic representations of related hydrodynamic‐type equations, including viscous Burgers equations and Lagrangian‐averaged Navier‐Stokes alpha models. © 2007 Wiley Periodicals, Inc.  相似文献   

6.
We investigate the stabilizing effect of convection in three‐dimensional incompressible Euler and Navier‐Stokes equations. The convection term is the main source of nonlinearity for these equations. It is often considered destabilizing although it conserves energy due to the incompressibility condition. In this paper, we show that the convection term together with the incompressibility condition actually has a surprising stabilizing effect. We demonstrate this by constructing a new three‐dimensional model that is derived for axisymmetric flows with swirl using a set of new variables. This model preserves almost all the properties of the full three‐dimensional Euler or Navier‐Stokes equations except for the convection term, which is neglected in our model. If we added the convection term back to our model, we would recover the full Navier‐Stokes equations. We will present numerical evidence that seems to support that the three‐dimensional model may develop a potential finite time singularity. We will also analyze the mechanism that leads to these singular events in the new three‐dimensional model and how the convection term in the full Euler and Navier‐Stokes equations destroys such a mechanism, thus preventing the singularity from forming in a finite time. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
We consider one dimensional isentropic compressible Navier–Stokes equations with constitutive relation of Maxwell's law instead of Newtonion law. For this new model, we show that for small initial data, a unique smooth solution exists globally and converges to the equilibrium state as time goes to infinity. For some large data, in contrast to the situation for classical compressible Navier–Stokes equations, which admits global solutions, we show finite time blow up of solutions for the relaxed system. Moreover, we prove the compatibility of the two systems in the sense that, for vanishing relaxation parameters, the solutions to the relaxed system are shown to converge to the solutions of classical system.  相似文献   

8.
In this paper, we are concerned with the large time behavior of solutions to the Cauchy problem for the one dimensional Navier‐Stokes/Allen‐Cahn system. Motivated by the relationship between the Navier‐Stokes/Allen‐Cahn system and the Navier‐Stokes system, we can prove that the solutions to the one‐dimensional compressible Navier‐Stokes/Allen‐Cahn system tend time‐asymptotically to the rarefaction wave, where the strength of the rarefaction wave is not required to be small. The proof is mainly based on a basic energy method.  相似文献   

9.
We present new exact solutions and reduced differential systems of the Navier‐Stokes equations of incompressible viscous fluid flow. We apply the method of semi‐invariant manifolds, introduced earlier as a modification of the Lie invariance method. We show that many known solutions of the Navier‐Stokes equations are, in fact, semi‐invariant and that the reduced differential systems we derive using semi‐invariant manifolds generalize previously obtained results that used ad hoc methods. Many of our semi‐invariant solutions solve decoupled systems in triangular form that are effectively linear. We also obtain several new reductions of Navier‐Stokes to a single nonlinear partial differential equation. In some cases, we can solve reduced systems and generate new analytic solutions of the Navier‐Stokes equations or find their approximations, and physical interpretation.  相似文献   

10.
In this paper, we consider the global existence and uniqueness of the classical solutions for the three‐dimensional where the existence of global classical solutions to the compressible Navier–Stokes equations was obtained by using the continuity methods under the assumption that the initial energy is sufficiently small. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H?1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
In this study, we discuss some limit analysis of a viscous capillary model of plasma, which is expressed as a so‐called the compressible Navier‐Stokes‐Poisson‐Korteweg equation. First, the existence of global smooth solutions for the initial value problem to the compressible Navier‐Stokes‐Poisson‐Korteweg equation with a given Debye length λ and a given capillary coefficient κ is obtained. We also show the uniform estimates of global smooth solutions with respect to the Debye length λ and the capillary coefficient κ. Then, from Aubin lemma, we show that the unique smooth solution of the 3‐dimensional Navier‐Stokes‐Poisson‐Korteweg equations converges globally in time to the strong solution of the corresponding limit equations, as λ tends to zero, κ tends to zero, and λ and κ simultaneously tend to zero. Moreover, we also give the convergence rates of these limits for any given positive time one by one.  相似文献   

13.
The similarity transform for the steady three‐dimensional Navier‐Stokes equations of flow between two stretchable disks gives a system of nonlinear ordinary differential equations which is analytically solved by applying a newly developed method, namely, the homotopy analysis method. The analytic solutions of the system of nonlinear ordinary differential equations are constructed in the series form. The convergence of the obtained series solutions is analyzed. The validity of our solutions is verified by the numerical results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

14.
We study the Cauchy problem of the 3‐dimensional nonhomogeneous heat conducting Navier‐Stokes equations with nonnegative density. First of all, we show that for the initial density allowing vacuum, the strong solution to the problem exists globally if the velocity satisfies the Serrin's condition. Then, under some smallness condition, we prove that there is a unique global strong solution to the 3D viscous nonhomogeneous heat conducting Navier‐Stokes flows. Our method relies upon the delicate energy estimates.  相似文献   

15.
In this paper, we are concerned with the system of the non‐isentropic compressible Navier–Stokes equations coupled with the Maxwell equations through the Lorentz force in three space dimensions. The global existence of solutions near constant steady states is established, and the time‐decay rates of perturbed solutions are obtained. The proof for existence is due to the classical energy method, and the investigation of large‐time behavior is based on the linearized analysis of the non‐isentropic Navier–Stokes–Poisson equations and the electromagnetic part for the linearized isentropic Navier–Stokes–Maxwell equations. In the meantime, the time‐decay rates obtained by Zhang, Li, and Zhu [J. Differential Equations, 250(2011), 866‐891] for the linearized non‐isentropic Navier–Stokes–Poisson equations are improved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we consider the compressible bipolar Navier–Stokes–Poisson equations with a non‐flat doping profile in three‐dimensional space. The existence and uniqueness of the non‐constant stationary solutions are established when the doping profile is a small perturbation of a positive constant state. Then under the smallness assumption of the initial perturbation, we show the global existence of smooth solutions to the Cauchy problem near the stationary state. Finally, the convergence rates are obtained by combining the energy estimates for the nonlinear system and the L2‐decay estimates for the linearized equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
We study a nonlocal modification of the compressible Navier–Stokes equations in mono‐dimensional case with a boundary condition characteristic for the free boundaries problem. From the formal point of view, our system is an intermediate between the Euler and Navier–Stokes equations. Under certain assumptions, imposed on initial data and viscosity coefficient, we obtain the local and global existence of solutions. Particularly, we show the uniform in time bound on the density of fluid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we study the global existence of classical solutions to the three‐dimensional compressible Navier–Stokes equations with a density‐dependent viscosity coefficient (λ = λ(ρ)). For the general initial data, which could be either vacuum or non‐vacuum, we prove the global existence of classical solutions, under the assumption that the viscosity coefficient μ is large enough. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we investigate the large‐time decay and stability to any given global smooth solutions of the 3‐D incompressible inhomogeneous Navier‐Stokes equations. In particular, we prove that given any global smooth solution (a,u) of (1.2), the velocity field u decays to 0 with an explicit rate, which coincides with the L2 norm decay for the weak solutions of the 3‐D classical Navier‐Stokes system [26,29] as t goes to ∞. Moreover, a small perturbation to the initial data of (a,u) still generates a unique global smooth solution to (1.2), and this solution keeps close to the reference solution (a,u) for t > 0. We should point out that the main results in this paper work for large solutions of (1.2). © 2010 Wiley Periodicals, Inc.  相似文献   

20.
In this paper, we study the zero viscosity and capillarity limit problem for the one‐dimensional compressible isentropic Navier–Stokes–Korteweg equations when the corresponding Euler equations have rarefaction wave solutions. In the case that either the effects of initial layer are ignored or the rarefaction waves are smooth, we prove that the solutions of the Navier–Stokes–Korteweg equation with centered rarefaction wave data exist for all time and converge to the centered rarefaction waves as the viscosity and capillarity number vanish, and we also obtain a rate of convergence, which is valid uniformly for all time. These results are showed by a scaling argument and elementary energy analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号