首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this Article, we present our findings on the formation of metal sulfide nanocrystals from sulfur-alkylamine solutions. By pulsed field gradient diffusion NMR along with the standard toolbox of 1D and 2D NMR, we determined that sulfur-amine solutions used as a sulfur precursor exist as alkylammonium polysulfides at low temperatures. Upon heating to temperatures used in nanocrystal synthesis, the polysulfide ions react with excess amine to generate H(2)S, which combines with the metal precursor to form metal sulfide. Four different reaction pathways were found, each of which produced H(2)S and the byproducts identified in this Article. Thioamides were identified as an intermediate and were shown to exhibit much more rapid kinetics than sulfur-alkylamine solutions at low temperatures in the synthesis of metal sulfide nanocrystals.  相似文献   

2.
Nickel sulfide and copper sulfide nanocrystals were synthesized by adding elemental sulfur to either dichlorobenzene-solvated (copper sulfide) or oleylamine-solvated metal(II) precursors (nickel sulfide) at relatively high temperature to produce the metal sulfide. Nickel sulfide nanocrystals are cubic Ni(3)S(4) (polydymite) with irregular prismatic shapes, forming by a two-step reduction-sulfidation mechanism where Ni(II) reduces to Ni metal before sulfidation to Ni(3)S(4). Despite extensive efforts to optimize the Ni(3)S(4) nanocrystal size and shape distributions, polydisperse nanocrystals are produced. In contrast, copper sulfide nanocrystals can be obtained with narrow size and shape distributions. The copper sulfide stoichiometry depended on the Cu:S mole ratio used in the reaction: Cu:S mole ratios of 1:2 and 2:1 gave CuS (covellite) and Cu(1.8)S (digenite), respectively. CuS nanocrystals formed as hexagonal disks that assemble into stacked ribbons when cast from solution onto a substrate. CuS, Cu(1.8)S, and Ni(3)S(4) differ from the Cu(2)S and NiS nanocrystals obtained by solventless decomposition of metal thiolate single source precursors, in terms of stoichiometry for copper sulfide, and both stoichiometry and morphology for nickel sulfide [Ghezelbash, A.; Sigman, M. B., Jr.; Korgel, B. A. Nano Lett. 2004, 4, 537-542. Sigman, M. B. Ghezelbash, A.; Hanrath, T.; Saunders, A. E.; Lee, F.; Korgel, B. A. J. Am. Chem. Soc. 2003, 125, 16050-16057].  相似文献   

3.
本文简要综述了本研究组近年来在利用热解单源前驱体合成方法制备纳米金属硫化物方面的相关工作.通过采用不同的反应前驱体,改变反应时间、反应温度,选择不同的表面配体分子及反应溶剂等手段实现了对纳米金属硫化物形貌、尺寸、组成和晶相的精确调控.除了对合成方法和过程进行介绍外,本文还简要讨论了具有特定形貌的金属硫化物的形成机理,并对几类典型硫化物的应用研究进行了总结.  相似文献   

4.
PbS nanostructures with different morphologies, such as rod-like, belt-like, downy-velvet-flower-like and dendrite-like, were fabricated successfully under varied reaction conditions in aqueous solution at lower temperature by the assistance of surfactant CTAB. Especially, among all the synthesis methods for PbS nanocrystals, this is the first report using basic acetate of lead, which was formed at initial reaction stage, as a precursor to control the crystal nucleation rate. This synthesis method is a promising one to metal sulfide for its easy control, low-cost and large-scale production. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), field-emission scanning electron microscopy (FE-SEM) and UV-visible spectrophotometer (UV-vis) were used to characterize the products. A rational mechanism is proposed and three control factors to the crystal directional growth are also concluded.  相似文献   

5.
Controlling nanomaterial growth via the "specific microwave effect" can be achieved by selective heating of the chalcogenide precursor. The high polarizability of the precursor allows instantaneous activation and subsequent nucleation leading to the synthesis of CdSe and CdTe in nonmicrowave absorbing alkane solvents. Regardless of the desired size, narrow dispersity nanocrystals can be isolated in less than 3 min with high quantum efficiencies and elliptical morphologies. The reaction does not require a high temperature injection step, and the alkane solvent can be easily removed. In addition, batch-to-batch variance in size is 4.2 +/- 0.14 nm for 10 repeat experimental runs. The use of a stopped-flow reactor allows near continuous automation of the process leading to potential industrial benefits.  相似文献   

6.
A general and facile approach has been developed to prepare various metal oxide nanocrystals from commercially available metal acetate precursors using an amine-mediated reaction. The influence of temperature and capping agents on the yield and final morphology of the metal oxides nanocrystals was investigated. The approach was applied in the synthesis of shape-controlled ZnO nanocrystals. ZnO nanowires, nanorods, bullets and triangular nanocrystals were successfully prepared by tuning the molar ratio between amine to zinc acetate precursor. On the basis of FTIR and NMR spectroscopic studies, we propose that the amine could mediate the breakdown of the metal acetates through a nucleophilic attack mechanism. The results suggest that amine can play dual role as both the attacking agent and capping agent in this new methodology.  相似文献   

7.
Oleic acid (OAc) is commonly used as a surfactant and/or solvent for the oil-phase synthesis of metal nanocrystals but its explicit roles are yet to be resolved. Here, we report a systematic study of this problem by focusing on a synthesis that simply involves heating of Pt(acac)2 in OAc for the generation of Pt nanocrystals. When heated at 80 °C, the ligand exchange between Pt(acac)2 and OAc leads to the formation of a PtII–oleate complex that serves as the actual precursor to Pt atoms. Upon increasing the temperature to 120 °C, the decarbonylation of OAc produces CO, which can act as a reducing agent for the generation of Pt atoms and thus formation of nuclei. Afterwards, several catalytic reactions can take place on the surface of the Pt nuclei to produce more CO, which also serves as a capping agent for the formation of Pt nanocrystals enclosed by {100} facets. The emergence of Pt nanocrystals further promotes the autocatalytic surface reduction of PtII precursor to enable the continuation of growth. This work not only elucidates the critical roles of OAc at different stages in a synthesis of Pt nanocrystals, but also represents a pivotal step forward toward the rational synthesis of metal nanocrystals.  相似文献   

8.
As a new precursor, [bis(thiosemicarbazide)copper(II)]chloride; ([Cu(TSC)2]Cl2), complex was used in thermal decomposition process for the synthesis of Cu2S nanocrystals. The steric hindrance of the precursor raises the need of using co-surfactant, therefore oleylamine (C18H37N) and triphenylphosphine (C18H15P) were applied as solvent and surfactant of the reaction. CuS nanocrystals were synthesized via hydrothermal decomposition of [bis(thiosemicarbazide) copper(II)] without any surfactant. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy. Synthesized copper sulfide nanostructures have average size of 20–50?nm. Finally, optical properties of the products were examined and investigated by PL spectra.  相似文献   

9.
Enhancement of Se solubility in organic solvents without the use of alkylphosphine ligands is the key for phosphine-free synthesis of selenide semiconductor nanocrystals (NCs). In this communication, we demonstrate the dissolution of elemental Se in oleylamine by alkylthiol reduction at room temperature, which generates soluble alkylammonium selenide. This Se precursor is highly reactive for hot-injection synthesis of selenide semiconductor NCs, such as Cu(2)ZnSnSe(4), Cu(InGa)Se(2), and CdSe. In the case of Cu(2)ZnSnSe(4), for example, the as-synthesized NCs possessed small size, high size monodispersity, strong absorbance in the visible region, and in particular a promising increase in photocurrent under AM1.5 illumination. The current preparation of the Se precursor is simple and convenient, which will promote the synthesis and practical applications of selenide NCs.  相似文献   

10.
The present investigation reports, the novel synthesis of nanocrystals CdS using thermal decomposition of [bis(salicylaldehydato)cadmium(II)], as a new precursor, and elemental sulfur in oleylamine. The as-synthesized CdS crystals have diameters about 10 nm. The products were characterized by X-ray diffraction (XRD) transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet–visible (UV–Vis) spectroscopy and Fourier transformed infrared (FT-IR) spectra. The results of this paper show that the shape and size of cadmium sulfide nanocrystals can be controlled systematically by adjusting certain reaction parameters, such as the reactant concentration, the reaction temperature and the reaction time. Cadmium sulfide nanoparticles and nanorods with different lengths have been successfully prepared.  相似文献   

11.
Uniform ZnS nanocrystals of about 15?nm were prepared through a low temperature hydrothermal approach by treating Zn-PhPO nanosheets with Na2S aqueous solution. Both the precursor and the final product were studied by the means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The photo-luminescent spectrum of the synthesized ZnS nanocrystals showed their good crystalline nature. Based on this study, the precursor structure-controlling effect was discussed, and in addition, the relevant factors possibly affecting the particle formation and the growth possessed were applied in the discussion to interpret the transformation mechanism. Further research showed that both the structure characters of the precursors and the mass transportation which occurred during the synthesis greatly affected the morphology and organization state of the final products. This research may provide some facts on the structure-controlling approaches along with a general method for the preparation of uniform sulfide nanocrystals.  相似文献   

12.
Formation of nearly monodiperse MnO nanocrystals by simple heating of Mn stearate in octadecene was studied systematically and quantitatively as a model for non-injection synthesis of nanocrystals. For controlling the shape of the nanocrystals, that is, rice, rods, peanuts, needles, and dots, either an activation reagent (ocadecanol) or an inhibitor (stearic acid) might be added prior to heating. The quantitative results of this typical non-injection system reveal that the formation of nearly monodisperse nanocrystals did not follow the well-known "focusing of size distribution" mechanism. A new growth mechanism, self-focusing enabled by inter-particle diffusion, is proposed. Different from the traditional "focusing of size distribution", self-focusing not only affects the growth process of the nanocrystals, but may also play a role in controlling nucleation. Because of the simplicity of the reaction system, it was possible to also identify the chemical reactions associated with the growth and ripening of MnO nanocrystals with a variety of shapes. Through a recycling reaction path, water was identified as a decisive component in determining the kinetics for both growth and ripening in this system, although the reaction occurred at around 300 degrees C.  相似文献   

13.
理解纳米晶的生长机制对单分散纳米晶的可控合成至关重要。本文以热分解法制备的双金属铁氧体(钴铁氧和锰铁氧)纳米颗粒为例,利用透射电子显微镜(TEM)系统研究了铁氧体纳米晶的生长机制,揭示了由此造成的成分偏聚现象。对不同时间阶段的反应产物的分析结果表明,两步加热法(即先后在相对低的温度和相对高的温度下加热反应)是制备高质量的单分散铁氧体纳米晶的关键;通过控制低温反应阶段的时间可实现纳米晶的形核阶段和生长阶段的有效分离,从而有利于单分散纳米晶的合成。利用扫描透射电子显微镜(STEM)及电子能量损失谱(EELS)谱学成像技术分析,我们进一步发现了双金属铁氧体纳米晶中的成分偏聚现象,表明双金属铁氧体纳米晶在形核阶段主要形成富Fe的核芯,而在生长阶段则形成更富Co/Mn的双金属铁氧体壳层。这些结果对制备高质量的单分散铁氧体纳米晶具有重要的指导意义,同时也有助于正确理解热分解法制备的铁氧体纳米晶的表面成分和相关表面物理化学性质。  相似文献   

14.
We report on the synthesis of semiconductor nanocrystals of PbS, ZnS, CdS, and MnS through a facile and inexpensive synthetic process. Metal-oleylamine complexes, which were obtained from the reaction of metal chloride and oleylamine, were mixed with sulfur. The reaction mixture was heated under appropriate experimental conditions to produce metal sulfide nanocrystals. Uniform cube-shaped PbS nanocrystals with particle sizes of 6, 8, 9, and 13 nm were synthesized. The particle size was controlled by changing the relative amount of PbCl(2) and sulfur. Uniform 11 nm sized spherical ZnS nanocrystals were synthesized from the reaction of zinc chloride and sulfur, followed by one cycle of size-selective precipitation. CdS nanocrystals that consist of rods, bipods, and tripods were synthesized from a reaction mixture containing a 1:6 molar ratio of cadmium to sulfur. Spherical CdS nanocrystals (5.1 nm sized) were obtained from a reaction mixture with a cadmium to sulfur molar ratio of 2:1. MnS nanocrystals with various sizes and shapes were synthesized from the reaction of MnCl(2) and sulfur in oleylamine. Rod-shaped MnS nanocrystals with an average size of 20 nm (thickness) x 37 nm (length) were synthesized from a 1:1 molar ratio of MnCl(2) and sulfur at 240 degrees C. Novel bullet-shaped MnS nanocrystals with an average size of 17 nm (thickness) x 44 nm (length) were synthesized from the reaction of 4 mmol of MnCl(2) and 2 mmol of sulfur at 280 degrees C for 2 h. Shorter bullet-shaped MnS nanocrystals were synthesized from a 3:1 molar ratio of MnCl(2) and sulfur. Hexagon-shaped MnS nanocrystals were also obtained. All of the synthesized nanocrystals were highly crystalline.  相似文献   

15.
By a simple and facile wet-chemistry technique without any surfactant, various shapes of Ag(2)S crystals--including leaflike pentagonal nanoplates, crinkly nanoscrolls, hexagonal prismlike microtubes, and microrods--were fabricated in situ on a large-area silver-foil surface separately. Detailed experiments revealed that the Ag(2)S nanoplates were formed just by immersing the silver foil in a sulfur/ethanol solution at room temperature and atmospheric pressure, and they subsequently rolled into nanoscrolls and further grew into microtubes and microrods under solvothermal conditions. Inspired by the natural curling of a piece of foliage, we proposed a surfactant-free rolling mechanism to interpret the observed morphological evolution from lamellar to tubular structures. Based on these simple, practical, and green chemical synthetic routes, we can easily synthesize lamellar, scrolled, tubular, and clubbed Ag(2)S crystals by simply adjusting the reaction temperature, pressure, and time. It is very interesting to note that the current rolling process is quite different from the previous reported rolling mechanism that highly depends on the surfactants; we revealed that the lamellar Ag(2)S could be rolled into tubular structures without using any surfactant or other chemical additives, just like the natural rolling process of a piece of foliage. Therefore, this morphology-controlled synthetic route of Ag(2)S crystals may provide new insight into the synthesis of metal sulfide semiconducting micro-/nanocrystals with desired morphologies for further industrial applications. The optical properties of the pentagonal Ag(2)S nanoplates/film were also investigated by UV/Vis and photoluminescence (PL) techniques, which showed large blue-shift of the corresponding UV/Vis and PL spectra.  相似文献   

16.
Selective formation of metallic Ag and semiconducting Ag(2)S nanocrystals has been achieved via a modified hot-injection process from a single-source precursor molecule, Ag(SCOPh), which can potentially generate both [Ag] and [AgS] fragments simultaneously. When the precursor molecules are injected into a preheated reaction system at 160 degrees C, spherical Ag(2)S nanocrystals are directly obtained even without a molecular activator, such as alkylamines. Mixtures of Ag and Ag(2)S or pure metallic Ag nanocrystals are obtained if the precursor molecules are injected at lower than 160 degrees C or room temperature. These results are attributed to the direct transfer of thermal energies to precursor molecules, which are enough to dissociate S-C as well as Ag-S bonds simultaneously. Detailed characterizations about the produced nanocrystals have been performed using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as energy-dispersive X-ray (EDX) spectrum.  相似文献   

17.
We present a straightforward, economically viable, and "green" approach for the synthesis and stabilization of relatively monodisperse Au nanocrystals with an average diameter of 8.2 nm (standard deviation, SD=2.3 nm) by using nontoxic and renewable biochemical of beta-D-glucose and by simply adjusting the pH environment in aqueous medium. The beta-D-glucose acts both as reducing agent and capping agent for the synthesis and stabilization of Au nanocrystals in the system. The UV/Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), electron diffraction (ED), and X-ray diffraction (XRD) techniques were employed to systematically characterize Au nanocrystals synthesized. Additionally, it is shown that these beta-D-glucose-stabilized Au nanocrystals function as effective catalyst for the reduction of 4-nitrophenol in the presence of NaBH4 (otherwise unfeasible if only the strong reducing agent NaBH4 is employed), which was reflected by the UV/Vis spectra of the catalytic reaction kinetics.  相似文献   

18.
In this paper, we demonstrate the synthesis of sulfide and selenide nanocrystals in a water-ethanol mixed solution system. This synthetic way was based on the direct reactions between metal ions and S(2-)/Se. Linoleic acid was adopted to protect the nanocrystals from agglomeration. Without involving extreme experimental conditions, this less toxic synthetic route can be expected to bring more opportunities to nanocrystal-related research and application fields.  相似文献   

19.
The first colloidal synthesis of Cu2GeS3 (CGS) nanocrystals with a thermodynamically metastable wurtzite crystal phase is reported. As a benefit of the sulfur precursors used in the synthesis, the shape of the as‐synthesized wurtzite CGS nanocrystals can be controlled in the form of spherical nanoparticles, nanorectangles, and hollow nanorectangles. A detailed investigation into the effects of reaction conditions necessary to obtain phase‐pure wurtzite CGS nanocrystals is presented. The choice of sulfur precursor and precursor injection temperature play a significant role in determining the crystal phase of the CGS nanocrystals. The band gap of the new wurtzite phase CGS was measured to be 1.76 eV and the CGS nanocrystals exhibited a good electrochemical photoresponse, which was indicative of their potential application as an active layer in the field of solar cells.  相似文献   

20.
We report a facile chemical route for the synthesis of monodisperse nanocrystals of various metal sulfides (PbS, Cu(2)S, and Ag(2)S) and their assemblies into nanocrystal superlattices (NCSs); the sulfides NCSs were precipitated by adding ethanol to nanocrystal colloids, which were obtained directly by a reaction between metal thiolate and thioacetamide in a pure dodecanethiol solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号