首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以镍钴氢氧化物、异丙醇铝为原料,采用水解法合成三元前驱体Ni_(0.88)Co_(0.07)Al_(0.05)O_2,再与锂盐混合烧结得到正极材料(TEM)、X射线光电子能谱(XPS)、能量色散X射线谱(EDS)和恒电流充放电测试等对样品的晶体结构、微观形貌、元素价态以及电化学性能进行表征。研究表明,料液比1∶25、水洗3次、600℃回烧2 h合成的LiNi_(0.88)Co_(0.07)Al_(0.05)O_2具有较优的综合电化学性能,其在0.2C的放电比容量达207.6 mAh·g~(-1),首次充放电效率为84.8%,1C放电比容量为192.0 mAh·g~(-1),循环100周后,材料的放电比容量仍有148.0 mAh·g~(-1),容量保持率达到77.1%。  相似文献   

2.
采用碳酸盐共沉淀与燃烧法相结合的方法制备得到了多孔微纳球形结构的富锂正极材料0.6Li_2MnO_3·0.4LiNi_(0.5)Mn_(0.5)O_2。借助X射线衍射(XRD)分析、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附和恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能。结果表明该方法制备出的材料是由一次颗粒径约300 nm的小颗粒组成的多孔微纳球形结构,比表面积为13 m2·g~(-1),具有完善的α-NaFeO_2层状结构(空间群为R3m)。电化学性能测试结果证实该材料具有优异的高容量、高循环稳定性和高倍率性能。在2.0~4.8 V,电流密度为0.1C、0.2C、0.5C、1C、3C、5C和10C时的放电比容量分别为:266、254、235、205、186、149和107 m Ah·g~(-1);在0.5C下循环100次后,放电比容量仍为217 m Ah·g~(-1)(容量保持率为94%)。  相似文献   

3.
采用高能球磨法通过不同球磨时间制备xLiF-(Ni_(1/6)Co_(1/6)Mn_(4/6))_3O_4新型正极材料,并对材料进行石墨烯复合改性,提高其性能。结合X-射线衍射、扫描电镜、电化学性能测试和X-射线电子能谱对所制备的正极材料性能进行表征。结果表明,球磨24h的产物的放电比容量最高,为157. 3mAh·g~(-1)。此外,正极材料添加石墨烯能改善其电化学性能,当石墨烯复合量为20%,在室温、0. 05C(1C=250mAh·g~(-1))、1. 5~4. 8V下,材料首圈的放电比容量为235mAh·g~(-1),相较于无石墨烯的材料,在1C和5C倍率下,放电比容量分别提高到151和114 m Ah·g~(-1)。文中还分析了正极材料放电容量随截止电压的变化,确定了复合正极材料在高电压下有获得更高放电容量的潜力。  相似文献   

4.
通过调整不同配锂量、不同焙烧温度以及包覆改性对高镍无钴二元材料性能的影响因素进行了研究。对不同原样和其改性后的材料进行了X射线粉末衍射(XRD)分析和首次充放电性能和倍率性能、循环性能等电化学性能测试。其中过锂量(质量分数)为5%,焙烧温度为820℃的材料性能优异,其首次放电比容量为171.6 mAh·g^-1,1C和3C的放电比容量分别为147.8、129.8 mAh·g^-1。对材料进行锰化合物(质量分数1.0%)包覆处理后,材料的残碱量下降明显,加工性能优异,倍率性能得到明显改善,1C和3C的放电比容量分别提升为156.5、141.8 mAh·g^-1。2Ah软包电池常温循环830周容量保持率为80%,高温循环345周容量保持率为80%。  相似文献   

5.
为克服Co_3O_4负极材料导电率低、循环稳定性差的缺点,选择Co_2(NDC)_2DMF_2(NDC=1,4-萘二甲酸根)为前驱体采用两步煅烧工艺,制备了具有高碳含量的Co_3O_4/C复合材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和拉曼光谱对样品进行了表征。采用热重分析法(TGA)测定了Co_3O_4/C中非晶态碳的含量。作为锂离子电池的负极材料,Co_3O_4/C具有高的可逆比容量、优异的循环性能(在200 m A·g~(-1)的电流密度下,循环200圈后放电比容量稳定保持在1 000 mAh·g~(-1))和良好的倍率性能(在100、200、500、1 000和2 000 mA·g~(-1)的电流密度下,放电比容量为分别1 076.3、976.2、872.9、783.6和670.1 mAh·g~(-1))。材料优异的电化学性能归结为有机配体衍生的高含量非晶态碳的导电和缓冲作用有利于电子的快速传递并有效减缓了金属氧化物充放电过程中的体积膨胀。  相似文献   

6.
通过溶胶-凝胶法制备出Mg~(2+)掺杂Li_3V_(2-x)Mg_x(PO_4)_3/C(x=0,0.01,0.05,0.09)正极材料。采用X-射线衍射(XRD)、透射电镜(TEM)对材料的结构和形貌进行了表征和分析,通过恒流测试、循环伏安和交流阻抗测试对样品的电化学性能进行了表征,结果表明适量的掺杂能够显著提高材料的电化学性能。当倍率为0.2 C,充放电电压为2-4.3 V,材料Li_3V_(1.95)Mg_(0.05)(PO_4)_3/C表现出最优的电化学性能,首次放电容量达到162.1 mAh·g~(-1)。经过不同倍率的充放电循环后,其初始容量保持率可达98.5%,表现出优异的电化学稳定性。  相似文献   

7.
通过控制结晶法制备高密度类球形Ni_(0.85)Co_(0.06)Mn_(0.06)Al_(0.03)(OH)_2前驱体,与LiOH·H_2O均匀混合后,在820℃于氧气气氛下进行高温煅烧,最终合成高压实富镍正极材料Li Ni_(0.85)Co_(0.06)Mn_(0.06)Al_(0.03)O_2。通过扫描电子显微镜(SEM)表征前驱体、正极材料及正极片的形貌;X射线衍射(XRD)表明材料具有良好的六方单相层状α-NaFeO_2结构,能谱仪(EDS)分析表明材料颗粒中各组分含量呈均匀分布。制备的LiNi_(0.85)Co_(0.06)Mn_(0.06)Al_(0.03)O_2正极材料具有良好的加工性能和很高的压实密度,极片压实密度达到了3.82 g·cm~(-3)。以该极片组装的模拟电池具有良好的电化学性能,尤其具有优异的倍率性能,在电压区间2.8~4.3 V和0.2C电流密度充放电条件下,首次放电比容量为211.7 mAh·g~(-1),首次充放电效率88.9%,5C大倍率充放电条件下容量仍达到180.2 mAh·g~(-1),循环200周容量保持率为80.4%。  相似文献   

8.
以乙酸锂、乙酸锰、浓磷酸和PVP为原料,采用静电纺丝法制备了LiMnPO_4/C纳米纤维锂离子电池正极材料,并研究了煅烧温度对LiMnPO_4/C纳米纤维样品形貌、结构和电化学性能的影响。通过X射线粉末衍射(XRD)和扫描电子显微镜(SEM)对其样品进行了结构和形貌表征。结果表明,经700℃焙烧的LiMnPO_4/C样品为橄榄石型结构,在SEM下呈直径约为310 nm纤维状。该样品在室温0.2 C倍率下首次放电比容量可达157.3 mAh·g~(-1),循环1000圈后的放电比容量在150 mAh·g~(-1)左右,容量保有率为95.3%,具有较高的循环稳定性。  相似文献   

9.
以氟化锂为氟源,通过高温固相法合成了F掺杂的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2。采用X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)和电化学测试等手段研究F影响LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2结构和性能的微观机制。结果表明:适量F掺杂可以提高正极材料的放电比容量,改善其倍率性、循环性和热稳定性。当F掺杂量(物质的量分数)为1.5%时,材料的综合电化学性能最优,初始放电比容量(0.2C)和50周循环容量保持率(1C)分别由原始的174.0 mAh·g~(-1)(78.7%)提高到178.6 mAh·g~(-1)(85.7%)。LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料性能的改善可归因于F能够增强过渡金属层、锂层与氧层之间的结合力,提高材料的结构稳定性。此外,F掺杂还有利于降低电化学反应中的界面电阻和电荷转移阻抗。  相似文献   

10.
采用氧化铝修饰改性富锂锰基正极材料,探讨了表面活性剂在修饰改性中的作用。利用扫描电子显微镜、X射线衍射仪、透射电子显微镜和电化学性能测试等方法对材料结构和电化学性能进行分析。实验结果表明,十二烷基三甲基溴化铵(DTAB)能使Al_2O_3纳米颗粒均匀包覆在富锂锰基正极材料表面,有效增强了复合材料结构的稳定性。在600 mA·g~(-1)电流密度下,该复合材料的初始放电容量为186mAh·g~(-1)。经过500次循环后,其可逆放电比容量仍高于132 mAh·g~(-1),初始容量保持率高达71%。此外,电压衰退也被有效抑制,复合材料表现出优异的综合电化学性能。  相似文献   

11.
采用共沉淀法和原位溶胶-凝胶法制备了TiO2-Al2O3复合载体,其负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备. 通过N2吸附(BET)、X射线衍射(XRD)、透射电镜(TEM)、程序升温还原(TPR),X射线光电子能谱(XPS)和等离子体发射光谱(ICP-AES)表征技术对催化剂进行了表征,并通过喹啉的加氢脱氮反应评价了催化剂的加氢脱氮性能. 结果表明,原位溶胶-凝胶法制成的复合载体基本保留了原有的γ-Al2O3的孔特征,具有较大的比表面积和较宽的孔分布,TiO2主要以表面富集的形式分散在管状的γ-Al2O3表面,其负载的磷化镍催化剂还原后所形成的活性相为Ni2P和Ni12P5;而共沉淀法制成的复合载体比表面积较小,孔径分布更加集中,TiO2趋于在块状的Al2O3表面均匀分散,其负载的磷化镍催化剂具有更好的可还原性,还原后所形成的活性相为Ni2P. 不同的载体制备方法和不同的钛铝比对催化剂加氢脱氮性能影响较大,当n(Ti)/n(Al)=1/8时,共沉淀法载体负载的催化剂表现出最佳的加氢脱氮性能,在340 ℃,3 MPa,氢油体积比500,液时空速3 h-1的反应条件下,喹啉的脱氮率可以达到91.3%.  相似文献   

12.
采用溶胶-凝胶法制备CaO-P2O5-SiO2-Na2O-B2O3体系前驱体粉末,用CaF2替代部分CaO再次制备前驱体粉末。 通过TG-DSC分析确定结晶温度为865 ℃,经过热处理获得主晶相为Na6Ca3Si6O18的玻璃陶瓷。 通过X射线衍射(XRD)、傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)等技术手段及体外生物活性实验分析玻璃陶瓷的显微结构及性能。 结果表明,CaF2的加入能提高玻璃陶瓷的体积密度、抗折强度和弹性模量,并且不会破坏玻璃陶瓷的生物活性。  相似文献   

13.
The structural disorder in Ba0.6Sr0.4Al2O4 (space group P6322) was investigated by X-ray powder diffraction and selected-area electron diffraction (SAED). The initial structural model was determined using direct methods, and it was further modified by the combined use of Rietveld method and maximum-entropy method (MEM). MEM-based pattern fitting method was subsequently applied, resulting in the final reliability indices of Rwp=9.61%, Rp=6.96%, RB=1.40% and S=1.25. The electron density distribution was satisfactorily expressed by the split-atom model in which the strontium/barium and oxygen atoms were split to occupy the lower symmetry sites. The diffuse scattering in SAED was mainly attributable to the positional disorder of oxygen atoms.  相似文献   

14.
以静电纺丝技术制备的TiO2纳米纤维为基质,硝酸铋为铋源,KOH为矿化剂,成功制备了多异质结Bi2Ti2O7/TiO2/Bi4Ti3O12复合纳米纤维光催化剂。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis DRS)等一系列表征,对其物相组成、微观形貌和光学性质等进行分析。结果表明:TiO2纳米纤维的介入,将Ⅰ型异质结Bi2Ti2O7/Bi4Ti3O12分离为2个Ⅱ型异质结Bi2Ti2O7/TiO2和Bi4Ti3O12/TiO2。Bi2  相似文献   

15.
以静电纺丝技术制备的TiO2纳米纤维为基质,硝酸铋为铋源,KOH为矿化剂,成功制备了多异质结Bi4Ti3O12/TiO2/Bi2Ti2O7复合纳米纤维光催化剂。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis DRS)等一系列表征,对其物相组成、微观形貌和光学性质等进行分析。结果表明: TiO2纳米纤维的介入,将Ⅰ型异质结Bi2Ti2O7/Bi4Ti3O12分离为2个Ⅱ型异质结Bi2Ti2O7/TiO2和Bi4Ti3O12/TiO2。Bi2Ti2O7、Bi4Ti3O12和TiO2三者的协同作用,有效提高了可见光吸收能力,改变了光生载流子的传输路径,降低了光生电子与空穴的复合几率,从而获得高效的光催化降解CH3CHO性能。可见光照8 h,Bi4Ti3O12/TiO2/Bi2Ti2O7复合纳米纤维对CH3CHO的降解率达到87.1%。  相似文献   

16.
Crystal structure and structural disorder of (Ba0.65Ca0.35)2SiO4 were investigated by laboratory X-ray powder diffraction (CuKα1). The initial structural model with eleven independent atoms in the unit cell was determined using direct methods, and it was further modified to a split-atom model, in which the two types of Ba/Ca atoms and two types of SiO4 tetrahedra were, respectively, positionally and orientationally disordered. The crystal structure is trigonal (space group , Z=4) with lattice dimensions a=0.57505(1) nm, c=1.46706(2) nm and V=0.42014(1) nm3. The validity of the structural model was verified by the three-dimensional electron density distribution, the structural bias of which was reduced as much as possible using the maximum-entropy methods-based pattern fitting (MPF). The final reliability indices calculated from the MPF were Rwp=9.56% (S=1.48), Rp=7.29%, RB=1.82% and RF=0.88%. This compound is most probably homeotypic to glaserite.  相似文献   

17.
The crystal structure of Ca12Al14O32Cl2 was determined from laboratory X-ray powder diffraction data (CuKα1) using the Rietveld method, with the anisotropic displacement parameters being assigned for all atoms. The crystal structure is cubic (space group , Z=2) with lattice dimensions a=1.200950(5) nm and V=1.73211(1) nm3. The reliability indices calculated from the Rietveld method were Rwp=8.48% (S=1.21), Rp=6.05%, RB=1.27% and RF=1.01%. The validity of the structural model was verified by the three-dimensional electron density distribution, the structural bias of which was reduced as much as possible using the maximum-entropy methods-based pattern fitting (MPF). The reliability indices calculated from the MPF were RB=0.75% and RF=0.56%. In the structural model there are one Ca site, two Al sites, two O sites and one Cl site. This compound is isomorphous with Ca12Al10.6Si3.4O32Cl5.4. Europium-doped sample Ca12Al14O32Cl2:Eu2+ was prepared and the photoluminescence properties were presented. The excitation spectrum consisted of two wide bands, which were located at about 268 and 324 nm. The emission spectrum, when excited at 324 nm, resulted in indigo light with a peak at about 442 nm.  相似文献   

18.
采用高温固相法制备了La0.75Sr0.25Cr0.5Mn0.5O3(LSCM)并利用XRD,SEM以及电化学阻抗谱(EIS)分别对粉体及电极进行研究。结果发现LSCM在C3H8-O2-N2混合气氛下能够保持很好的高温化学稳定性,且与电解质材料YSZ在1400℃空气气氛下不发生化学反应。电化学测试结果表明,阳极支撑型单室固体氧化物燃料电池Ni-YSZ|YSZ|LSCM在700℃、C3H8-O2-N2混合气氛下的短路电流密度达317 mA·cm-2,最大功率密度73 mW·cm-2。将LSCM与CGO形成梯度阴极,相同测试条件下,单室电池的短路电流密度为560 mA·cm-2,功率密度达到110 mW·cm-2,电池输出性能提高约50%。  相似文献   

19.
以合成的g-C3N4纳米片和Ag/TiO2空心微球为原料,采用机械搅拌的方法构筑了g-C3N4/Ag/TiO2三元复合光催化剂。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见光漫反射(UV-Vis DRS)和光致发光光谱(PL)对g-C3N4/Ag/TiO2进行了表征。研究表明,g-C3N4/Ag/TiO2是由Ag/TiO2微球和g-C3N4纳米片复合而成的。与TiO2相比,其可见光响应范围延长,光生载流子的分离速率加快。在室温下,用降解罗丹明B的反应考察了g-C3N4/Ag/TiO2的可见光催化活性。研究表明,光照180 min时,g-C3N4(0.5%)/Ag/TiO2显示了最高的光催化活性(91.9%),分别是TiO2和Ag/TiO2的7.5和1.8倍。光催化活性的提高与合理的异质结构建和Ag的导电性能有关。  相似文献   

20.
通过溶胶凝胶-水热合成法制备出一种新型的硅钛酸钠孔道结构化合物(Na4Ti4Si3O10)。经XRD、SEM、TEM、X-荧光分析等方法对其晶体结构进行了表征。晶体学数据为:P43a=b=7.8110?、c=11.9735?、α=β=γ=90°。该化合物具有三维空间结构,组成基本单元为Ti-O八面体簇和Si-O四面体,孔道结构为两端都开放的管状毛细孔。微观形貌为规整的四方晶粒,粒子的平均尺寸为20nm;研究了Na4Ti4Si3O10的化学稳定性、热稳定性以及在整个pH范围内的除铯性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号