首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Poly(lactide‐co‐glycolide) (PLGA) scaffolds embedded spatially with hydroxyapatite (HA) particles on the pore walls (PLGA/HA‐S) were fabricated by using HA‐coated paraffin spheres as porogens, which were prepared by Pickering emulsion. For comparisons, PLGA scaffolds loaded with same amount of HA particles (2%) in the matrix (PLGA/HA‐M) and pure PLGA scaffolds were prepared by using pure paraffin spheres as porogens. Although the three types of scaffolds had same pore size (450–600 µm) and similar porosity (90%–93%), the PLGA/HA‐S showed the highest compression modulus. The embedment of the HA particles on the pore walls endow the PLGA/HA‐S scaffold with a stronger ability of protein adsorption and mineralization as well as a larger mechanical strength against compression. In vitro culture of rat bone marrow stem cells revealed that cell morphology and proliferation ability were similar on all the scaffolds. However, the alkaline phosphatase activity was significantly improved for the cells cultured on the PLGA/HA‐S scaffolds. Therefore, the method for fabricating scaffolds with spatially embedded nanoparticles provides a new way to obtain the bioactive scaffolds for tissue engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Interconnected porous hydroxyapatite (HA) scaffolds are widely used for bone repair and replacement, owing to their ability to support the adhesion, transfer, proliferation and differentiation of cells. In the present study, the polymer impregnation approach was adopted to produce porous HA scaffolds with three-dimensional (3D) porous structures. These scaffolds have an advantage of highly interconnected porosity (≈85%) but a drawback of poor mechanical strength. Therefore, the as-prepared HA scaffolds were lined with composite polymer coatings in order to improve the mechanical properties and retain its good bioactivity and biocompatibility at the same time. The composite coatings were based on poly(d,l-lactide) (PDLLA) polymer solutions, and contained single component or combination of HA, calcium sulfate (CS) and chondroitin sulfate (ChS) powders. The effects of composite coatings on scaffold porosity, microstructure, mechanical property, in vitro mineralizing behavior, and cell attachment of the resultant scaffolds were investigated. The results showed that the scaffolds with composite coatings resulted in significant improvement in both mechanical and biological properties while retaining the 3D interconnected porous structure. The in vitro mineralizing behaviors were mainly related to the compositions of CS and ChS powders in the composite coatings. Excellent cell attachments were observed on the pure HA scaffold as well as the three types of composite scaffolds. These composite scaffolds with improved mechanical properties and bioactivities are promising bone substitutes in tissue engineering fields.  相似文献   

3.
The ability to control the architecture and strength of a bone tissue engineering scaffold is critical to achieve a harmony between the scaffold and the host tissue. Rapid prototyping (RP) technique is applied to tissue engineering to satisfy this need and to create a scaffold directly from the scanned and digitized image of the defect site. Design and construction of complex structures with different shapes and sizes, at micro and macro scale, with fully interconnected pore structure and appropriate mechanical properties are possible by using RP techniques. In this study, RP was used for the production of poly(ε-caprolactone) (PCL) scaffolds. Scaffolds with four different architectures were produced by using different configurations of the fibers (basic, basic-offset, crossed and crossed-offset) within the architecture of the scaffold. The structure of the prepared scaffolds were examined by scanning electron microscopy (SEM), porosity and its distribution were analyzed by micro-computed tomography (µ-CT), stiffness and modulus values were determined by dynamic mechanical analysis (DMA). It was observed that the scaffolds had very ordered structures with mean porosities about 60%, and having storage modulus values about 1 × 107 Pa. These structures were then seeded with rat bone marrow origin mesenchymal stem cells (MSCs) in order to investigate the effect of scaffold structure on the cell behavior; the proliferation and differentiation of the cells on the scaffolds were studied. It was observed that cell proliferation was higher on offset scaffolds (262000 vs 235000 for basic, 287000 vs 222000 for crossed structure) and stainings for actin filaments of the cells reveal successful attachment and spreading at the surfaces of the fibers. Alkaline phosphatase (ALP) activity results were higher for the samples with lower cell proliferation, as expected. Highest MSC differentiation was observed for crossed scaffolds indicating the influence of scaffold structure on cellular activities.  相似文献   

4.
This study presents a novel rapid prototyping process to fabricate silicate/hydroxyapatite (HA) bone scaffolds for tissue engineering applications. The HA particles are embedded in the gelled silica matrix to form a green part of bioceramic bone scaffold after processing by selective laser sintering. The composition of the bioceramic scaffold is in the series of SiO2·P2O5·CaO. Results indicate that the proposed process could fabricate a multilayer hollow shell structure with brittle property but sufficient integrity for handling prior to post-processing. The fabricated bone scaffold models had a surface finish of 25 μm, a dimensional shrinkage of 16 %, a maximum bending strength of 4.7 MPa, and an apparent porosity of 28 % under the laser energy density of 1.5 J/mm2. In vitro bioactivity evaluation by optical density value using a microculture tetrazolium test assay revealed that the bioceramic bone scaffolds were suitable for cell culture, demonstrating their application in tissue engineering.  相似文献   

5.
Designing and fabricating nanocomposite scaffolds for bone regeneration from different biodegradable polymers and bioactive materials are an essential step to engineer tissues. In this study, the composite scaffold of gelatin/hyaluronic acid (Gel/HA) containing nano-bioactive glass (NBG) was prepared by using freeze-drying method. The biocompatibilities in-vitro of the Gel-HA/NBG composite scaffolds, including MTT assay, ALP activity, von Kossa staining and tetracycline staining, were investigated. The SEM observations revealed that the prepared scaffolds were porous with three-dimensional (3D) and interconnected microstructure, agglomerated NBG particles were uniformly dispersed in the matrix. MTT results indicated that the tested materials didn't show any cytotoxicity. The presence of NBG in the composite scaffold further enhanced the ALP activity in comparison with the pure Gel/HA scaffold. The von Kossa staining and tetracycline staining results also indicated that the NBG may improve the cell response. Therefore, the results indicated the nanocomposite scaffold made from Gel, HA and NBG particles could be considered as a potential bone tissue engineering implant.  相似文献   

6.
In this work, nano-structured scaffolds were designed for tissue engineering using collagen, hyaluronic acid (HA) and nano-bioactive glass (NBAG) as their main components. The scaffold was prepared via freeze-drying method and the properties including morphology, porosity, compressive strength, swelling ratio and cytotoxicity in-vitro, were also evaluated. The composite scaffolds showed well interconnected macropores with the pore size of ranging from 100 to 500 μm. The porosity percent and swelling ability were decreased with the introduction of NBAG into the collagen/HA hydrogel; however, the compressive strength was enhanced. The cytotoxicity in-vitro study shows that the collagen-HA/NBAG scaffolds have good biocompatibility with improving effect on fibroblastic cells growth. It could be concluded that this scaffold fulfills the main requirements to be considered as a bone substitute.  相似文献   

7.
For tissue engineering applications, a scaffold is required that can act as a template and guide for cell proliferation, cell differentiation and tissue growth. Interconnected pores with diameters greater than 100 m are required for tissue ingrowth, vascularisation and nutrient delivery to the centre of the scaffold. 3D bioactive glass scaffolds have been produced, by foaming sol-gel derived bioactive glasses. The method to produce foams with a modal macropore diameter of 100 m, and a handling strength suitable for cell culture, was to foam 50 ml batches of sol with the aid of a surfactant and gelling agent. In vitro and in vivo tests show that the scaffolds have high potential to be used in bone tissue engineering applications. Larger batches are required to produce scaffolds commercially. The aim of this work was to investigate how the process could be up-scaled for commercial use. This study shows that foaming larger aliquots of sol decreased the scaffold porosity and interconnectivity and investigates methods of modifying the process to obtain large quantities of foam scaffolds with pores in excess of 100 m. The optimum method to produce foams of similar pore structure from 200 ml sol to those produced from 50 ml sol comprised of adding 3 ml surfactant and 12 ml dionised water to the sol to start foaming and injecting a gas mixture (70% helium, 30% nitrogen) at 0.2 bar while applying vigorous agitation.  相似文献   

8.
A bioactive scaffold with desired microstructure is of great importance to induce infiltration of somatic and stem cells, and thereby to achieve the in situ inductive tissue regeneration. In this study, a scaffold with oriented pores in the radial direction is prepared by using methacrylated hyaluronic acid (HA‐MA) via controlled directional cooling of a HA‐MA solution, and followed with photo‐crosslinking to stabilize the structure. Poly(lactide‐co‐glycolide) (PLGA) is further infiltrated to enhance the mechanical strength, resulting in a compressive modulus of 120 kPa. In vitro culture of bone marrow stem cells (BMSCs) reveals spontaneous cell aggregation inside this type of scaffold with a spherical morphology. In vivo transplantation of the cell‐free scaffold in rabbit knees for 12 w regenerates simultaneously both cartilage and subchondral bone with a Wakitani score of 2.8. Moreover, the expression of inflammatory factor interleukin‐1β (IL‐1β) is down regulated, although tumor necrosis factor‐α (TNF‐α) is remarkably up regulated. With the anti‐inflammatory, bioactive properties and good restoration of full thickness cartilage defect in vivo, the oriented macroporous HA‐MA/PLGA hybrid scaffold has a great potential for the practical application in the in situ cartilage regeneration.

  相似文献   


9.
Current therapeutic interventions in bone defects are mainly focused on finding the best bioactive materials for inducing bone regeneration via activating the related intracellular signaling pathways. Integrins are trans‐membrane receptors that facilitate cell‐extracellular matrix (ECM) interactions and activate signal transduction. To develop a suitable platform for supporting human bone marrow mesenchymal stem cells (hBM‐MSCs) differentiation into bone tissue, electrospun poly L‐lactide (PLLA) nanofiber scaffolds were coated with nano‐hydroxyapatite (PLLA/nHa group), gelatin nanoparticles (PLLA/Gel group), and nHa/Gel nanoparticles (PLLA/nHa/Gel group) and their impacts on cell proliferation, expression of osteoblastic biomarkers, and bone differentiation were examined and compared. MTT data showed that proliferation of hBM‐MSCs on PLLA/nHa/Gel scaffolds was significantly higher than other groups (P < .05). Alkaline phosphatase activity was also more increased in hBM‐MSCs cultured under osteogenic media on PLLA/nHa/Gel scaffolds compared to others. Gene expression evaluation confirmed up‐regulation of integrin α2β1 as well as the osteogenic genes BGLAP, COL1A1, and RUNX2. Following use of integrin α2β1 blocker antibody, the protein level of integrin α2β1 in cells seeded on PLLA/nHa/Gel scaffolds was decreased compared to control, which confirmed that most of the integrin receptors were bound to gelatin molecules on scaffolds and could activate the integrin α2β1/ERK axis. Collectively, PLLA/nHa/Gel scaffold is a suitable platform for hBM‐MSCs adhesion, proliferation, and osteogenic differentiation in less time via activating integrin α2β1/ERK axis, and thus it might be applicable in bone tissue engineering.  相似文献   

10.
Nano-tricalcium phosphate (n-TCP) is an osteoconductive substance which, like polycaprolactone (PCL), has been used for clinical purposes for many years; It has now been licensed for a range of products for clinical and medication distribution. This research aimed to examine the effects of platelet-rich plasma on mesenchymal stem cell proliferation and osteogenic differentiation. Thus, we decided to examine the in vitro and in vivo actions of PRP-treated porous biocomposite scaffolds based on nano-tricalcium phosphate- polycaprolactone (n-TCP-PCL/PRP). The prepared samples were described utilizing FTIR, XRD, and SEM. MTT has measured the cytotoxicity of the biocomposite scaffolds. After two weeks of cell seeding, Alizarin red staining confirmed bone mineral formation by MSCs cells. Moreover, from day 4 to day 7, n-TCP-PCL/PRP biocomposite scaffold improved the expresses of bone marker genes. Platelet-rich plasma (PRP) in conjunction with nano-tricalcium phosphate- polycaprolactone (n-TCP-PCL) biocomposite scaffold is beneficial for the regeneration and stability of the freshly developed bone tissue.  相似文献   

11.
Artificially fabricated hydroxyapatite (HAP) shows excellent biocompatibility with various kinds of cells and tissues which makes it an ideal candidate for a bone substitute material. In this study, hydroxyapatite nanoparticles have been prepared by using the wet chemical precipitation method using calcium nitrate tetra-hydrate [Ca(NO3)2.4H2O] and di-ammonium hydrogen phosphate [(NH4)2 HPO4] as precursors. The composite scaffolds have been prepared by a freeze-drying method with hydroxyapatite, chitosan, and gelatin which form a 3D network of interconnected pores. Glutaraldehyde solution has been used in the scaffolds to crosslink the amino groups (|NH2) of gelatin with the aldehyde groups (|CHO) of chitosan. The X-ray diffraction (XRD) performed on different scaffolds indicates that the incorporation of a certain amount of hydroxyapatite has no influence on the chitosan/gelatin network and at the same time, the organic matrix does not affect the crystallinity of hydroxyapatite. Transmission electron microscope (TEM) images show the needle-like crystal structure of hydroxyapatite nanoparticle. Scanning Electron Microscope (SEM) analysis shows an interconnected porous network in the scaffold where HAP nanoparticles are found to be dispersed in the biopolymer matrix. Fourier transforms infrared spectroscopy (FTIR) confirms the presence of hydroxyl group (OH-) , phosphate group (PO3-4) , carbonate group (CO2-3) , imine group (C=N), etc. TGA reveals the thermal stability of the scaffolds. The cytotoxicity of the scaffolds is examined qualitatively by VERO (animal cell) cell and quantitatively by MTTassay. The MTT-assay suggests keeping the weight percentage of glutaraldehyde solution lower than 0.2%. The result found from this study demonstrated that a proper bone replacing scaffold can be made up by controlling the amount of hydroxyapatite, gelatin, and chitosan which will be biocompatible, biodegradable, and biofriendly for any living organism.  相似文献   

12.
Polyester‐based scaffolds covalently functionalized with arginine‐glycine‐aspartic acid‐cysteine (RGDC) peptide sequences support the proliferation and osteogenic differentiation of stem cells. The aim is to create an optimized 3D niche to sustain human bone marrow stem cell (hBMSC) viability and osteogenic commitment, without reliance on differentiation media. Scaffolds consisting of poly(lactide‐co‐trimethylene carbonate), poly(LA‐co‐TMC), and functionalized poly(lactide) copolymers with pendant thiol groups are prepared by salt‐leaching technique. The availability of functional groups on scaffold surfaces allows for an easy and straightforward method to covalently attach RGDC peptide motifs without affecting the polymerization degree. The strategy enables the chemical binding of bioactive motifs on the surfaces of 3D scaffolds and avoids conventional methods that require harsh conditions. Gene and protein levels and mineral deposition indicate the osteogenic commitment of hBMSC cultured on the RGDC functionalized surfaces. The osteogenic commitment of hBMSC is enhanced on functionalized surfaces compared with nonfunctionalized surfaces and without supplementing media with osteogenic factors. Poly(LA‐co‐TMC) scaffolds have potential as scaffolds for osteoblast culture and bone grafts. Furthermore, these results contribute to the development of biomimetic materials and allow a deeper comprehension of the importance of RGD peptides on stem cell transition toward osteoblastic lineage.  相似文献   

13.
The ability to mimic the chemical, physical and mechanical properties of the natural extra‐cellular matrix is a key requirement for tissue engineering scaffolds to be successful. In this study, we successfully fabricated aligned nanofibrous multi‐component scaffolds for bone tissue engineering using electrospinning. The chemical features were mimicked by using the natural components of bone: collagen and nano‐hydroxyapatite along with poly[(D ,L ‐lactide)‐co‐glycolide] as the major component. Anisotropic features were mimicked by aligning the nanofibers using a rotating mandrel collector. We evaluated the effect of incorporation of nano‐HA particles to the system. The morphology and mechanical properties revealed that,at low concentrations, nano‐HA acted as a reinforcement. However, at higher nano‐HA loadings, it was difficult to disrupt aggregations and, hence, a detrimental effect was observed on the overall scaffold properties. Thermal analysis showed that there were slight interactions between the individual components even though the polymers existed as a two‐phase system. Preliminary in vitro cell‐culture studies revealed that the scaffold supported cell adhesion and spreading. The cells assumed a highly aligned morphology along the direction of fiber orientation. Protein adsorption experiments revealed that the synergistic effect of increased surface area and the presence of nano‐HA in the polymer matrix enhanced total protein adsorption. Crosslinking with 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride resulted in improved mechanical properties of the scaffolds and improved degradation stability, under physiological conditions.

  相似文献   


14.
Cellulose nanocrystal-reinforced poly(vinyl alcohol)/silica glass hybrid scaffolds were fabricated using the freeze-drying method. In this study, we develop molecular-level-based hybrid scaffolds with possible bioactivity behavior by adding silica sol–gel. The results showed a highly porous structure and a significant improvement in mechanical performance (stiffness) of hybrid scaffolds with an increased content of cellulose nanocrystals followed by the addition of silica-based bioactive glass. In vitro cell study with MC3T3-E1 cells on hybrid scaffolds for 1 and 3 days revealed good cell adhesion and growth. Thus, the obtained hybrid scaffold may be a competitive candidate for bone tissue engineering applications.  相似文献   

15.
Removal of residual tumor cells and regeneration of large bone defects are urgently required after surgical resection of bone tumors. To address these issues, a bifunctional scaffold with high photothermal effect and osteogenesis was developed for bone tumor therapy. Sintered mesoporous imidazolate framework 8 (ZIF8) nanoparticles with porphyrin-like macrocycles were synthesized by calcination of ZIF8 precursors under an N2 atmosphere. The prepared ZIF8 possesses good photothermal efficacy and drug loading capability. Phenamil (Phe), an activator of bone morphogenetic protein pathways, was encapsulated into ZIF8 before loading onto gelatin nanofibrous (GF) scaffolds. The loaded Phe exhibited sustained and near-infrared triggered release profiles, which is capable of promoting bone morphogenetic protein 2 induced osteogenic differentiation even under near-infrared treatment. Moreover, our studies revealed that the photothermal effect of GF/ZIF8-Phe scaffolds can kill MG-63 cells in vitro and inhibit subcutaneous tumor growth in vivo. Therefore, the GF/ZIF8-Phe scaffold represents a novel bifunctional platform for tumor therapy and bone regeneration.  相似文献   

16.
Inverted colloidal crystals as three-dimensional cell scaffolds   总被引:1,自引:0,他引:1  
A new type of three-dimensional scaffold with inverted colloidal crystal geometry for the investigation of topological effects in cell cultures is introduced in this publication. The scaffolds are made by infiltration of the hexagonal crystal lattice of polystyrene spheres with sol-gel formulation and subsequent annealing. It possesses a relatively high degree of order among existing cell scaffolds and affords tight control over the scaffold porosity and tissue organization. The prepared scaffolds can be a convenient system for the investigation of cell-cell and cell-matrix interactions. Their biocompatibility is demonstrated for human hepatocellular carcinoma HEP G2 and human bone marrow HS-5 cell cultures. A preliminary effect of the scaffold topology on cell proliferation is observed. HEP G2 hepatocytes form a large number of 10-15 cell colonies on scaffolds made from 75-microm spheres, while their number diminishes for scaffolds from 10- and 160-microm spheres. Under similar conditions, HS-5 forms smaller colonies consisting of three to four cells in 90-microm cavities.  相似文献   

17.
The aim of this study was to fabricate and evaluate magnesium-zinc-graphene oxide nanocomposite scaffolds for bone tissue engineering. For this reason, Mg-6Zn, Mg-6Zn-1GO, and Mg-6Zn-2GO scaffolds were fabricated by the powder metallurgy method. The porosity level and also the pore size of the scaffolds were evaluated by SEM which varied from 40 to 46% and 200 to 500 μm, respectively. The chemical composition and microstructure of the scaffolds were characterized by XRD and SEM equipped with EDS; the presence of Mg, Zn, C, and O elements in the structure of the scaffolds was shown. Also, the elemental map confirmed the existence of magnesium, zinc, carbon, and oxygen in the structure of the scaffold. The mechanical properties of the scaffolds were investigated by the compression test; the results showed that by the addition of graphene oxide to the structure, the compressive strength of the samples increased from 5 to 8 MPa. Electrochemical corrosion polarization tests were conducted to evaluate the corrosion resistance of the samples immersed in simulated body fluid (SBF). Furthermore, the biodegradability of the scaffolds was determined by immersion of the samples in phosphate-buffered saline (PBS). The results demonstrated that the polarization resistance value and the corrosion rate for different formulations including Mg-6Zn, Mg-6Zn-1GO, and Mg-6Zn-2GO were 41.58, 35.48, and 55.40 Ω.cm2 followed by 10.60, 14.83, and 9.06 mm.year?1, respectively. Based on the results, the Mg-6Zn-2GO formulation presented the best corrosion resistance among the samples were investigated, which confirmed the results of the immersion test. Moreover, the MTT assay proved that the extract of Mg-6Zn-2GO scaffolds was not cytotoxic in contact with L-929 cells which validated the studied scaffolds for bone tissue applications.  相似文献   

18.
After about three decades of experience, tissue engineering has become one of the most important approaches in reconstructive medical research to treat non‐self‐healing bone injuries and lesions. Herein, nanofibrous composite scaffolds fabricated by electrospinning, which containing of poly(L‐lactic acid) (PLLA), graphene oxide (GO), and bone morphogenetic protein 2 (BMP2) for bone tissue engineering applications. After structural evaluations, adipose tissue derived mesenchymal stem cells (AT‐MSCs) were applied to monitor scaffold's biological behavior and osteoinductivity properties. All fabricated scaffolds had nanofibrous structure with interconnected pores, bead free, and well mechanical properties. But the best biological behavior including cell attachment, protein adsorption, and support cells proliferation was detected by PLLA‐GO‐BMP2 nanofibrous scaffold compared to the PLLA and PLLA‐GO. Moreover, detected ALP activity, calcium content and expression level of bone‐related gene markers in AT‐MSCs grown on PLLA‐GO‐BMP2 nanofibrous scaffold was also significantly promoted in compression with the cells grown on other scaffolds. In fact, the simultaneous presence of two factors, GO and BMP2, in the PLLA nanofibrous scaffold structure has a synergistic effect and therefore has a promising potential for tissue engineering applications in the repair of bone lesions.  相似文献   

19.
A nano-structured scaffold was designed for bone repair using collagen, hyaluronic acid (HYA) and nano-bioactive glass (NBaG) as its main components. The collagen-HYA/NBaG scaffold was prepared by using a freeze-drying technique and characterized by scanning electron microscopy (SEM). Osteoblastls were seeded on these scaffolds and their proliferation rate, alkaline phosphatase (ALP) activity and ability to form mineralized bone nodules were compared with those osteoblasts grown on cell culture plastic surfaces. The cross-section morphology shows that the collagen-HYA/NBaG scaffold possessed a three-dimensional (3D) interconnected homogenous porous structure. The results obtained from biological assessment show that this scaffold did not negatively affect osteoblasts proliferation rate and improves osteoblasts function as shown by increasing the ALP activity and calcium deposition and formation of mineralized bone nodules. Therefore, the composite scaffolds could provide a favorable environment for initial cell adhesion, maintained cell viability and cell proliferation, and had good in-vitro biocompatibility.  相似文献   

20.
Porous β-tricalcium phosphate (β-TCP) has been used for bone repair and replacement in clinics due to its excellent biocompatibility, osteoconductivity, and biodegradability. However, the application of β-TCP has been limited by its brittleness. Here, we demonstrated that an interconnected porous β-TCP scaffold infiltrated with a thin layer of poly(lactic-co-glycolic acid) (PLGA) polymer showed improved mechanical performance compared to an uncoated β-TCP scaffold while retaining its excellent interconnectivity and biocompatibility. The infiltration of PLGA significantly increased the compressive strength of β-TCP scaffolds from 2.90 to 4.19 MPa, bending strength from 1.46 to 2.41 MPa, and toughness from 0.17 to 1.44 MPa, while retaining an interconnected porous structure with a porosity of 80.65%. These remarkable improvements in the mechanical properties of PLGA-coated β-TCP scaffolds are due to the combination of the systematic coating of struts, interpenetrating structural characteristics, and crack bridging. The in vitro biological evaluation demonstrated that rat bone marrow stromal cells (rBMSCs) adhered well, proliferated, and expressed alkaline phosphatase (ALP) activity on both the PLGA-coated β-TCP and the β-TCP. These results suggest a new strategy for fabricating interconnected macroporous scaffolds with significantly enhanced mechanical strength for potential load-bearing bone tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号