首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

In this paper, we propose a closed-loop real-time feedback design for manipulating a quantum state to a target eigenstate via sequential measurements. To this end, based on the Lyapunov stability theorem, considering the controllability and convergence of the system, we select one measured observable and two control channels, which feedback part of the output signal to the input end, forming a closed-loop control. By dynamical programming, we find the optimal parameters to achieve state transfer with a high probability by real-time feedback control. Numerical simulation experiments show that, in a stochastic quantum system with non-Markovian noise, the real-time control strategy moves the system from initial state to the target eigenstate with fast convergence.

  相似文献   

2.
Utilizing the method of optimal control, we investigate the tactics of state transfer in the non-Markovian quantum system with phase relaxation and energy dissipative relaxation. The influence of Ohmic reservoir with Lorentz–Drude regularization is numerically studied. Owing to the decoherence and memory effects of non-Markovian channel, the purity of quantum state attenuates damply in the free evolution. The numerical simulations indicate that arbitrary state transfer for non-Markovian system can be realized under the optimal control function by a proper external control field with a success rate of more than 98 percent. When the right control field and function is implemented, not only the decoherence is compensated completely but also the purity of quantum states are maintained in the process of state transfer.  相似文献   

3.
Simple, controllable models play an important role in learning how to manipulate and control quantum resources. We focus here on quantum non-Markovianity and model the evolution of open quantum systems by quantum renewal processes. This class of quantum dynamics provides us with a phenomenological approach to characterise dynamics with a variety of non-Markovian behaviours, here described in terms of the trace distance between two reduced states. By adopting a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is influenced by the constituents defining the quantum renewal process, namely the time-continuous part of the dynamics, the type of jumps and the waiting time distributions. We focus not only on the mere value of the non-Markovianity measure, but also on how different features of the trace distance evolution are altered, including times and number of revivals.  相似文献   

4.
利用量子失协方法研究在非马尔科夫环境中具有时变磁场的两比特各向异性海森堡XYZ模型量子失协的动力学演化。海森堡XYZ系统的初始态为最大纠缠态 $\left|\psi_{A B}\right\rangle=(1 / \sqrt{2})(|11\rangle+|00\rangle)$ , 利用非马尔科夫量子态扩散方法解析求解非马尔科夫主方程, 得出系统的约化密度矩阵; 然后代入量子失协公式得出系统量子失协的演化动力学。讨论自旋耦合强度、环境关联系数γ和余弦磁场强度B对量子失协动力学的影响。研究发现: 当环境关联系数γ较小时, 系统的量子失协明显呈现上升趋势, 因此可以表明非马尔科夫环境具有增加系统量子失协的作用。同时较大的自旋耦合系数JJZ以及余弦磁场强度B也具有增加系统量子失协的作用。  相似文献   

5.
We study the dynamics of relaxation and thermalization in an exactly solvable model of a particle interacting with a harmonic oscillator bath. Our goal is to understand the effects of non-Markovian processes on the relaxational dynamics and to compare the exact evolution of the distribution function with approximate Markovian and non-Markovian quantum kinetics. There are two different cases that are studied in detail: (i) a quasiparticle (resonance) when the renormalized frequency of the particle is above the frequency threshold of the bath and (ii) a stable renormalized "particle" state below this threshold. The time evolution of the occupation number for the particle is evaluated exactly using different approaches that yield to complementary insights. The exact solution allows us to investigate the concept of the formation time of a quasiparticle and to study the difference between the relaxation of the distribution of bare particles and that of quasiparticles. For the case of quasiparticles, the exact occupation number asymptotically tends to a statistical equilibrium distribution that differs from a simple Bose-Einstein form as a result of off-shell processes whereas in the stable particle case, the distribution of particles does not thermalize with the bath. We derive a non-Markovian quantum kinetic equation which resums the perturbative series and includes off-shell effects. A Markovian approximation that includes off-shell contributions and the usual Boltzmann equation (energy conserving) are obtained from the quantum kinetic equation in the limit of wide separation of time scales upon different coarse-graining assumptions. The relaxational dynamics predicted by the non-Markovian, Markovian, and Boltzmann approximations are compared to the exact result. The Boltzmann approach is seen to fail in the case of wide resonances and when threshold and renormalization effects are important.  相似文献   

6.
A general approach to the construction of non-Markovian quantum theory is proposed. Non-Markovian equations for quantum observables and states are suggested by using general fractional calculus. In the proposed approach, the non-locality in time is represented by operator kernels of the Sonin type. A wide class of the exactly solvable models of non-Markovian quantum dynamics is suggested. These models describe open (non-Hamiltonian) quantum systems with general form of nonlocality in time. To describe these systems, the Lindblad equations for quantum observable and states are generalized by taking into account a general form of nonlocality. The non-Markovian quantum dynamics is described by using integro-differential equations with general fractional derivatives and integrals with respect to time. The exact solutions of these equations are derived by using the operational calculus that is proposed by Yu. Luchko for general fractional differential equations. Properties of bi-positivity, complete positivity, dissipativity, and generalized dissipativity in general non-Markovian quantum dynamics are discussed. Examples of a quantum oscillator and two-level quantum system with a general form of nonlocality in time are suggested.  相似文献   

7.
The investigation of the phenomenon of dephasing assisted quantum transport, which happens when the presence of dephasing benefits the efficiency of this process, has been mainly focused on Markovian scenarios associated with constant and positive dephasing rates in their respective Lindblad master equations. What happens if we consider a more general framework, where time-dependent dephasing rates are allowed, thereby, permitting the possibility of non-Markovian scenarios? Does dephasing-assisted transport still manifest for non-Markovian dephasing? Here, we address these open questions in a setup of coupled two-level systems. Our results show that the manifestation of non-Markovian dephasing-assisted transport depends on the way in which the incoherent energy sources are locally coupled to the chain. This is illustrated with two different configurations, namely non-symmetric and symmetric. Specifically, we verify that non-Markovian dephasing-assisted transport manifested only in the non-symmetric configuration. This allows us to draw a parallel with the conditions in which time-independent Markovian dephasing-assisted transport manifests. Finally, we find similar results by considering a controllable and experimentally implementable system, which highlights the significance of our findings for quantum technologies.  相似文献   

8.
Coherence is a key resource in quantum information science.Exactly understanding and controlling the variation of coherence are vital for implementation in realistic quantum systems.Using P-representation of density matrix,we obtain the analytical solution of the master equation for the classical states in the non-Markovian process and investigate the coherent dynamics of Gaussian states.It is found that quantum coherence can be preserved in such a process if the coupling strength between system and environment exceeds a threshold value.We also discuss the characteristic function of the Gaussian states in the non-Markovian process,which provides an inevitable bridge for the control and operation of quantum coherence.  相似文献   

9.
基于耦合超导量子比特系统模型下,在非马尔科夫环境中利用共生纠缠的方法分析了耦合系统纠缠的产生及其动力学的演化。研究了不同初始纠缠态下的纠缠猝死(ESD)和纠缠再生(ESB)现象;主要分析了系统耦合强度、库的截止频率与系统的振荡频率间的比值、温度和约瑟夫森能级差对纠缠演化的影响。结果表明:系统纠缠取决于初始纠缠态和系统的耦合强度J,并且通过调节以上非马尔科夫环境的相干参数可以延长解纠缠时间来确保量子计算过程中的应用和量子信息的实现。  相似文献   

10.
Using a measure for the divisibility of a dynamical map,we study the non-Markovian character of a quantum evolution of a spin-S system,which is in an external field and weakly coupled to a bosonic bath with a certain temperature.The finite-temperature dynamics of the open system is obtained by the time-convolutionless master equation in the secular approximation.Besides the influence of the environmental spectral density function,the external field and low temperatures can afect the quantum non-Markovianity.It is found out that the non-Markovian feature of a dynamical map of a high-dimensional spin system is noticeable in contrast to that of a low-dimension spin system.  相似文献   

11.
文献[Quantum Information and Computation,2005,5(4):350-363]提出量子相干性跟踪控制策略以保持量子位的相干性,该策略本质是开环控制,而开环控制的缺陷就是严重依赖于精确地了解系统的初始条件和模型参数。然而,我们对于系统的知识总是存在不确定性的。本文从鲁棒性的角度分析了量子相干性跟踪控制策略的局限性。首先,我们对该方法的鲁棒性进行了理论分析;接着用仿真实例定量说明了:量子初始条件和模型参数的精度对保持相干性的影响。根据相干性的精度要求,我们可以利用仿真分析的手段,来确定对模型参数和初始状态必须满足的精度条件。总之,我们在应用中必须谨慎采用量子相干性跟踪控制策略。  相似文献   

12.
Using a measure for the divisibility of a dynamical map, we study the non-Markovian character of a quantum evolution of a spin-S system, which is in an external field and weakly coupled to a bosonic bath with a certain temperature. The finite-temperature dynamics of the open system is obtained by the time-convolutionless master equation in the secular approximation. Besides the influence of the environmental spectral density function, the external field and low temperatures can affect the quantum non-Markovianity. It is found out that the non-Markovian feature of a dynamical map of a high-dimensional spin system is noticeable in contrast to that of a low-dimension spin system.  相似文献   

13.
The dynamics of the quantum Fisher information(QFI) of phase parameter estimation in a non-Markovian dissipative qubit system is investigated within the structure of single and double Lorentzian spectra. We use the time-convolutionless method with fourth-order perturbation expansion to obtain the general forms of QFI for the qubit system in terms of a non-Markovian master equation. We find that the phase parameter estimation can be enhanced in our model within both single and double Lorentzian spectra. What is more, the detuning and spectral width are two significant factors affecting the enhancement of parameter-estimation precision.  相似文献   

14.

We numerically simulate quantum coherence in a system of two qubits interacting with a reservoir for non-Markovian channels. The explicit form of the master equation is taken in terms of density-operator elements and is solved according to the initial conditions. In particular, we consider the effect of an Ohmic reservoir (OR) with Lorentz–Drude regularization (LDR) on the extent of coherence during dynamics. We describe the dynamical behavior of the coherence for low, intermediate, and high-temperature reservoirs. We explain the effect of the ratio of the cutoff frequency (CF) to the quantum system frequency and the effect of temperature on the quantum coherence. We show that a decreasing ratio enhances coherence, while an increasing temperature decreases it.

  相似文献   

15.
冯毅夫  张庆灵 《中国物理 B》2010,19(12):120504-120504
This paper deals with the problem of synchronization for a class of uncertain chaotic systems.The uncertainties under consideration are assumed to be Lipschitz-like nonlinearity in tracking error,with unknown growth rate.A logic-based switching mechanism is presented for tracking a smooth orbit that can be a limit cycle or a chaotic orbit of another system.Based on the Lyapunov approach,the adaptation law is determined to tune the controller gain vector online according to the possible nonlinearities.To demonstrate the efficiency of the proposed scheme,the well-known chaotic system namely Chua’s circuit is considered as an illustrative example.  相似文献   

16.
17.
The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects.The completely positive reduced dynamical map can be constructed in the Kraus representation.Quantum entanglement decays more slowly in the non-Markovian environment.The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel.It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants.  相似文献   

18.
In this paper, we proposed the exactly solvable model of non-Markovian dynamics of open quantum systems. This model describes open quantum systems with memory and periodic sequence of kicks by environment. To describe these systems, the Lindblad equation for quantum observable is generalized by taking into account power-law fading memory. Dynamics of open quantum systems with power-law memory are considered. The proposed generalized Lindblad equations describe non-Markovian quantum dynamics. The quantum dynamics with power-law memory are described by using integrations and differentiation of non-integer orders, as well as fractional calculus. An example of a quantum oscillator with linear friction and power-law memory is considered. In this paper, discrete-time quantum maps with memory, which are derived from generalized Lindblad equations without any approximations, are suggested. These maps exactly correspond to the generalized Lindblad equations, which are fractional differential equations with the Caputo derivatives of non-integer orders and periodic sequence of kicks that are represented by the Dirac delta-functions. The solution of these equations for coordinates and momenta are derived. The solutions of the generalized Lindblad equations for coordinate and momentum operators are obtained for open quantum systems with memory and kicks. Using these solutions, linear and nonlinear quantum discrete-time maps are derived.  相似文献   

19.
本文研究了Markovian过程和non-Markovian过程两种情况下,原子系统中偶极-偶极(D-D)相互作用和失谐量对两原子系统量子存储支撑(QMA)熵不确定度的调控作用.与Markovian过程相比,在non-Markovian过程中,由于库环境的记忆效应使得具有D-D相互作用的两原子系统QMA熵不确定度的演化行为呈现出振荡上升现象,且熵不确定度的上升趋势得到减缓,从而抑制了由系统量子噪声引起的退相干效应.此外,D-D相互作用对两原子系统QMA熵不确定度具有显著的调控能力,且D-D相互作用比失谐量的调控能力更强.  相似文献   

20.
罗小华  李华青  陈秋华 《物理学报》2009,58(11):7532-7538
提出一种混沌系统自适应追踪控制任意参考信号的新方法.该方法是通过预先设计出补偿控制器将混沌系统状态变量对参考信号的追踪控制问题转化为同结构混沌系统状态变量的自适应同步问题,再通过设计出自适应控制器,使同结构混沌系统全局渐近达到同步,追踪控制器为补偿控制器和自适应控制器的代数和.基于Lyapunov稳定性原理,理论上严格证明了利用本方法所设计追踪控制器的正确性.最后,以超混沌Chen系统为控制对象,利用本方法设计出追踪控制器完成了对不动点,正、余弦信号,同结构混沌系统状态变量,异结构混沌系统状态变量的追踪控 关键词: 自适应追踪控制 补偿控制器 自适应控制器 追踪控制器  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号