首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
A general approach to the construction of non-Markovian quantum theory is proposed. Non-Markovian equations for quantum observables and states are suggested by using general fractional calculus. In the proposed approach, the non-locality in time is represented by operator kernels of the Sonin type. A wide class of the exactly solvable models of non-Markovian quantum dynamics is suggested. These models describe open (non-Hamiltonian) quantum systems with general form of nonlocality in time. To describe these systems, the Lindblad equations for quantum observable and states are generalized by taking into account a general form of nonlocality. The non-Markovian quantum dynamics is described by using integro-differential equations with general fractional derivatives and integrals with respect to time. The exact solutions of these equations are derived by using the operational calculus that is proposed by Yu. Luchko for general fractional differential equations. Properties of bi-positivity, complete positivity, dissipativity, and generalized dissipativity in general non-Markovian quantum dynamics are discussed. Examples of a quantum oscillator and two-level quantum system with a general form of nonlocality in time are suggested.  相似文献   

2.
《Physics letters. A》2020,384(15):126303
A generalization of the standard model of Dirac particle in external electromagnetic field is proposed. In the generalization we take into account interactions of this particle with environment, which is described by the memory function. This function takes into account that the behavior of the particle at proper time can depend not only at the present time, but also on the history of changes on finite time interval. In this case the Dirac particle can be considered an open quantum system with non-Markovian dynamics. The violation of the semigroup property of dynamic maps is a characteristic property of dynamics with memory. We use the Fock-Schwinger proper time method and derivatives of non-integer orders with respect to proper time. The fractional differential equation, which describes the Dirac particle with memory, and the expression of its exact solution are suggested. The asymptotic behavior of the proposed solutions is described.  相似文献   

3.
A new quantum dissipation model based on memory mechanism is suggested. Dynamics of open and closed quantum systems with power-law memory is considered. The processes with power-law memory are described by using integration and differentiation of non-integer orders, by methods of fractional calculus. An example of quantum oscillator with linear friction and power-law memory is considered.  相似文献   

4.
C.H. Fleming  B.L. Hu 《Annals of Physics》2012,327(4):1238-1276
We treat several key stochastic equations for non-Markovian open quantum system dynamics and present a formalism for finding solutions to them via canonical perturbation theory, without making the Born–Markov or rotating wave approximations (RWA). This includes master equations of the (asymptotically) stationary, periodic, and time-nonlocal type. We provide proofs on the validity and meaningfulness of the late-time perturbative master equation and on the preservation of complete positivity despite a general lack of Lindblad form. More specifically, we show how the algebraic generators satisfy the theorem of Lindblad and Gorini, Kossakowski and Sudarshan, even though the dynamical generators do not. These proofs ensure the mathematical viability and physical soundness of solutions to non-Markovian processes. Within the same formalism we also expand upon known results for non-Markovian corrections to the quantum regression theorem. Several directions where these results can be usefully applied to are also described, including the analysis of near-resonant systems where the RWA is inapplicable and the calculation of the reduced equilibrium state of open systems.  相似文献   

5.
We construct a large class of non-Markovian master equations that describe the dynamics of open quantum systems featuring strong memory effects, which relies on a quantum generalization of the concept of classical semi-Markov processes. General conditions for the complete positivity of the corresponding quantum dynamical maps are formulated. The resulting non-Markovian quantum processes allow the treatment of a variety of physical systems, as is illustrated by means of various examples and applications, including quantum optical systems and models of quantum transport.  相似文献   

6.
Non-Markovian Lindblad rate equations arise from alternative microscopic interactions such as quantum systems coupled to composite reservoirs, where extra degrees of freedom mediate the interaction between the system and a Markovian reservoir, as well as from systems coupled to complex structured reservoirs whose action can be well approximated by a direct sum of Markovian sub-reservoirs (Budini in Phys. Rev. A 74:053815 [2006]). The purpose of this paper is two fold. First, for both kinds of interactions we find general expressions for the system operator correlations written in terms of the Lindblad rate propagator. Secondly, we find the conditions under which a quantum regression hypothesis is valid. We show that a non-Markovian quantum regression theorem can only be granted in a stationary regime, being a necessary condition the fulfillment of a detailed balance condition. This result is independent of the underlying microscopic interaction, providing a criterion for the validity of the regression hypothesis in non-Markovian Lindblad-like master equations. As an example, we study the correlations of a two-level system coupled to different kind of reservoirs.  相似文献   

7.
The investigation of the phenomenon of dephasing assisted quantum transport, which happens when the presence of dephasing benefits the efficiency of this process, has been mainly focused on Markovian scenarios associated with constant and positive dephasing rates in their respective Lindblad master equations. What happens if we consider a more general framework, where time-dependent dephasing rates are allowed, thereby, permitting the possibility of non-Markovian scenarios? Does dephasing-assisted transport still manifest for non-Markovian dephasing? Here, we address these open questions in a setup of coupled two-level systems. Our results show that the manifestation of non-Markovian dephasing-assisted transport depends on the way in which the incoherent energy sources are locally coupled to the chain. This is illustrated with two different configurations, namely non-symmetric and symmetric. Specifically, we verify that non-Markovian dephasing-assisted transport manifested only in the non-symmetric configuration. This allows us to draw a parallel with the conditions in which time-independent Markovian dephasing-assisted transport manifests. Finally, we find similar results by considering a controllable and experimentally implementable system, which highlights the significance of our findings for quantum technologies.  相似文献   

8.
9.
10.
A dynamical system governed by equations with derivatives of non-integer order, such as the fractional oscillator, can be considered as an open (non-isolated) system with memory. Fractional equations of motion are obtained from the interaction between the system and the environment with power-law spectral density.  相似文献   

11.
The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects.The completely positive reduced dynamical map can be constructed in the Kraus representation.Quantum entanglement decays more slowly in the non-Markovian environment.The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel.It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants.  相似文献   

12.
Field equations with time and coordinate derivatives of noninteger order are derived from a stationary action principle for the cases of power-law memory function and long-range interaction in systems. The method is applied to obtain a fractional generalization of the Ginzburg-Landau and nonlinear Schrödinger equations. As another example, dynamical equations for particle chains with power-law interaction and memory are considered in the continuous limit. The obtained fractional equations can be applied to complex media with/without random parameters or processes.  相似文献   

13.
Fractional-order calculus is about the differentiation and integration of non-integer orders. Fractional calculus (FC) is based on fractional-order thinking (FOT) and has been shown to help us to understand complex systems better, improve the processing of complex signals, enhance the control of complex systems, increase the performance of optimization, and even extend the enabling of the potential for creativity. In this article, the authors discuss the fractional dynamics, FOT and rich fractional stochastic models. First, the use of fractional dynamics in big data analytics for quantifying big data variability stemming from the generation of complex systems is justified. Second, we show why fractional dynamics is needed in machine learning and optimal randomness when asking: “is there a more optimal way to optimize?”. Third, an optimal randomness case study for a stochastic configuration network (SCN) machine-learning method with heavy-tailed distributions is discussed. Finally, views on big data and (physics-informed) machine learning with fractional dynamics for future research are presented with concluding remarks.  相似文献   

14.
In this study, classical and fractional Gross–Pitaevskii (GP) equations were solved for harmonic potential and repulsive interactions between the boson particles using the Homotopy Perturbation Method (HPM) to investigate the ground state dynamics of Bose–Einstein Condensation (BEC). The purpose of writing fractional GP equations is to consider the system in a more realistic manner. The memory effects of non-Markovian processes involving long-range interactions between bosons with the restriction of the ergodic hypothesis and the effect of non-Gaussian distributions of bosons in the condensation can be taken into account with time fractional and space fractional GP equations, respectively. The obtained results of the fractional GP equations differ from the results of the classical one. While the Gauss distribution describing the homogeneous, reversible and unitary system is obtained from the classical GP equation, the probability density of the solution function of fractional GP equations is non-conserved. This situation describes the inhomogeneous, irreversible and non-unitary systems.  相似文献   

15.
The fundamental concept of relative entropy is extended to a functional that is regular-valued also on arbitrary pairs of nonfaithful states of open quantum systems. This regularized version preserves almost all important properties of ordinary relative entropy such as joint convexity and contractivity under completely positive quantum dynamical semigroup time evolution. On this basis a generalized formula for entropy production is proposed, the applicability of which is tested in models of irreversible processes. The dynamics of the latter is determined by either Markovian or non-Markovian master equations and involves all types of states.  相似文献   

16.
王小云  丁邦福  赵鹤平 《中国物理 B》2013,22(2):20309-020309
Time evolution dynamics of three non-coupled two-level atoms independently interacting with their reservoirs is solved exactly by considering a damping Lorentzian spectral density.For three atoms initially prepared in Greenberger-Horne-Zeilinger-type state,quantum correlation dynamics in a Markovian reservoir is compared with that in a nonMarkovian reservoir.By increasing detuning quantity in the non-Markovian reservoir,three-atom correlation dynamics measured by negative eigenvalue presents a trapping phenomenon which provides long-time quantum entanglement.Then we compare the correlation dynamics of three atoms with that of two atoms,measured by quantum entanglement and quantum discord for an initial robuster-entangled type state.The result further confirms that quantum discord is indeed different from quantum entanglement in identifying quantum correlation of many bodies.  相似文献   

17.
杨锦涛  曹俊鹏  杨文力 《中国物理 B》2022,31(1):10314-010314
We study the non-Markovian dynamics of an open quantum system with machine learning.The observable physical quantities and their evolutions are generated by using the neural network.After the pre-training is completed,we fix the weights in the subsequent processes thus do not need the further gradient feedback.We find that the dynamical properties of physical quantities obtained by the dynamical learning are better than those obtained by the learning of Hamiltonian and time evolution operator.The dynamical learning can be applied to other quantum many-body systems,non-equilibrium statistics and random processes.  相似文献   

18.
In principle, non-Hermitian quantum equations of motion can be formulated using as a starting point either the Heisenberg's or the Schrödinger's picture of quantum dynamics. Here it is shown in both cases how to map the algebra of commutators, defining the time evolution in terms of a non-Hermitian Hamiltonian, onto a non-Hamiltonian algebra with a Hermitian Hamiltonian. The logic behind such a derivation is reversible, so that any Hermitian Hamiltonian can be used in the formulation of non-Hermitian dynamics through a suitable algebra of generalized (non-Hamiltonian) commutators.
These results provide a general structure (a template) for non-Hermitian equations of motion to be used in the computer simulation of open quantum systems dynamics.  相似文献   

19.
A wide range of quantum systems are time-invariant and the corresponding dynamics is dictated by linear differential equations with constant coefficients.Although simple in mathematical concept,the integration of these equations is usually complicated in practice for complex systems,where both the computational time and the memory storage become limiting factors.For this reason,low-storage Runge-Kutta methods become increasingly popular for the time integration.This work suggests a series of s-stage sth-order explicit RungeKutta methods specific for autonomous linear equations,which only requires two times of the memory storage for the state vector.We also introduce a 13-stage eighth-order scheme for autonomous linear equations,which has optimized stability region and is reduced to a fifth-order method for general equations.These methods exhibit significant performance improvements over the previous general-purpose low-stage schemes.As an example,we apply the integrator to simulate the non-Markovian exciton dynamics in a 15-site linear chain consisting of perylene-bisimide derivatives.  相似文献   

20.
Memory effect of non-Markovian dynamics in open quantum systems is often believed to be beneficial for quantum information processing. In this work, we employ an experimentally controllable two-photon open system, with one photon experiencing a dephasing environment and the other being free from noise, to show that non-Markovian effect may also have a negative impact on quantum tasks such as remote state preparation: For a certain period of controlled time interval, stronger non-Markovian effect yields lower fidelity of remote state preparation, as opposed to the common wisdom that more information leads to better performance. As a comparison, a positive non-Markovian effect on the RSP fidelity with another typical non-Markovian noise is analyzed. Consequently, the observed dual character of non-Markovian effect will be of great importance in the field of open systems engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号