首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple procedure has been used for preparation of modified glassy carbon electrode with carbon nanotubes and copper complex. Copper complex [Cu(bpy)2]Br2 was immobilized onto glassy carbon (GC) electrode modified with silicomolybdate, α-SiMo12O404− and single walled carbon nanotubes (SWCNTs). Copper complex and silicomolybdate irreversibly and strongly adsorbed onto GC electrode modified with CNTs. Electrostatic interactions between polyoxometalates (POMs) anions and Cu-complex, cations mentioned as an effective method for fabrication of three-dimensional structures. The modified electrode shows three reversible redox couples for polyoxometalate and one redox couple for Cu-complex at wide range of pH values. The electrochemical behavior, stability and electron transfer kinetics of the adsorbed redox couples were investigated using cyclic voltammetry. Due to electrostatic interaction, copper complex immobilized onto GC/CNTs/α-SiMo12O404− electrode shows more stable voltammetric response compared to GC/CNTs/Cu-complex modified electrode. In comparison to GC/CNTs/Cu-complex the GC/CNTs/α-SiMo12O404− modified electrodes shows excellent electrocatalytic activity toward reduction H2O2 and BrO3 at more reduced overpotential. The catalytic rate constants for catalytic reduction hydrogen peroxide and bromate were 4.5(±0.2) × 103 M−1 s−1 and 3.0(±0.10) × 103 M−1 s−1, respectively. The hydrodynamic amperommetry technique at 0.08 V was used for detection of nanomolar concentration of hydrogen peroxide and bromate. Detection limit, sensitivity and linear concentration range proposed sensor for bromate and hydrogen peroxide detection were 1.1 nM and 6.7 nA nM−1, 10 nM-20 μM, 1 nM, 5.5 nA nM−1 and 10 nM-18 μM, respectively.  相似文献   

2.
Electrochemical behavior of hexafluoroniobate (Nb(V)F6), heptafluorotungstate (W(VI)F7), and oxotetrafluorovanadate (V(V)OF4) anions has been investigated in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (BMPyrTFSA) ionic liquid at 298 K by means of cyclic voltammetry and chronoamperometry. Cyclic voltammograms at a Pt electrode showed that Nb(V)F6 anion is reduced to Nb(IV)F62− by a one-electron reversible reaction. Electrochemical reductions of W(VI)F7 and V(V)OF4 anions at a Pt electrode are quasi-reversible and irreversible reactions, respectively, according to cyclic voltammetry. The diffusion coefficients of Nb(V)F6, W(VI)F7 and V(V)OF4 determined by chronoamperometry are 1.34 × 10−7, 7.45 × 10−8 and 2.49 × 10−7 cm2 s−1, respectively. The Stokes radii of Nb(V)F6, W(VI)F7, and V(V)OF4 in BMPyrTFSA have been calculated to be 0.23, 0.38, and 0.12 nm, from the diffusion coefficients and viscosities obtained.  相似文献   

3.
Zheng L  Xiong L  Zheng D  Li Y  Liu Q  Han K  Liu W  Tao K  Yang S  Xia J 《Talanta》2011,85(1):43-48
In this paper, a polydopamine (PDA) film is electropolymerized on the surface of bilayer lipid membrane (BLM) which is immobilized with horseradish peroxidase (HRP). The coverage of the PDA film on HRP/BLM electrode is monitored by electrochemical impedance spectroscopy (EIS). The electrocatalytic reduction of H2O2 at the PDA/HRP/BLM electrode is studied by means of cyclic voltammetry (CV). The biosensor has a fast response to H2O2 of less than 5 s and an excellent linear relationship is obtained in the concentration range from 2.5 × 10−7 to 3.1 × 10−3 mol L−1, with a detection limit of 1.0 × 10−7 mol L−1 (S/N = 3). The response current of BLM/HRP/PDA biosensor retains 84% of its original response after being stored in 0.1 mol L−1 pH 7.0 PBS at 4 °C for 3 weeks. The selectivity, repeatability, and storage stability of PDA/HRP/BLM biosensor are greatly enhanced by the coverage of polydopamine film on BLM.  相似文献   

4.
Yongjin Zou  Lixian Sun  Fen Xu 《Talanta》2007,72(2):437-442
A Prussian Blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) composite film was fabricated by step-by-step electrodeposition on glassy carbon electrode (GCE). The electrode prepared exhibits enhanced electrocatalytic behavior and good stability for detection of H2O2 at an applied potential of 0.0 V. The effects of MWNTs thickness, electrodeposition time of PANI and rotating rate on the current response of the composite modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. A linear range from 8 × 10−9 to 5 × 10−6 M for H2O2 detection has been observed at the PB/PANI/MWNTs modified GCE with a correlation coefficient of 0.997. The detection limit is 5 × 10−9 M on signal-to-noise ratio of 3. To the best of our knowledge, this is the lowest detection limit for H2O2 detection. The electrode also shows high sensitivity (526.43 μA μM−1 cm−2) for H2O2 detection which is more than three orders of magnitude higher than the reported.  相似文献   

5.
α-Fe2O3 nanoparticles prepared using a simple solution-combusting method have been dispersed in chitosan (CH) solution to fabricate nanocomposite film on glass carbon electrode (GCE). The as-prepared α-Fe2O3 nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanocomposite film exhibits high electrocatalytic oxidation for nitric oxide (NO) and reduction for hydrogen peroxide (H2O2). The electrocatalytic oxidation peak is observed at +0.82 V (vs. Ag/AgCl) and controlled by diffusion process. The electrocatalytic reduction peak is observed at −0.45 V (vs. Ag/AgCl) and controlled by diffusion process. This α-Fe2O3-CH/GCE nanocomposite bioelectrode has response time of 5 s, linearity as 5.0 × 10−7 to 15.0 × 10−6 M of NO with a detection limit of 8.0 × 10−8 M and a sensitivity of −283.6 μA/mM. This α-Fe2O3-CH/GCE nanocomposite bioelectrode was further utilized in detection of H2O2 with a detection limit of 4.0 × 10−7 M, linearity as 1.0 × 10−6 to 44.0 × 10−6 M and with a sensitivity of 21.62 μA/mM. The shelf life of this bioelectrode is about 6 weeks under room temperature conditions.  相似文献   

6.
The [Pt2(H2P2O5)4]4− ions in the ground and excited states and the excited-state complexes M-[Pt2(H2P2O5)4]3− and M2-[Pt2(H2P2O5)4]2− (M = Ag, Tl) were studied in solution with various density functional theory (DFT) functionals from Gaussian 09 and Amsterdam Density Functional (ADF) programs. Calculated results were compared with ultrafast X-ray solution scattering data. Time dependent DFT (TD-DFT) calculations with the B3PW91 functional and unrestricted open shell calculations with the mPBE functional produce good agreement with the experimental results. Compared to gas phase calculations, the surrounding solvent is found to play an important role to shorten the Pt-Pt and M-Pt (M = Ag, Tl) bond lengths, lowering the molecular orbital energies and influences the molecular orbital transitions upon excitation, which stabilizes the excited transient molecules in solution.  相似文献   

7.
M. Ghiaci  R.J. Kalbasi 《Talanta》2007,73(1):37-45
The main purpose of this study is to develop an inexpensive, simple, selective and especially highly selective modified mixed-oxide carbon paste electrode (CPE) for voltammetric determination of Pb(II). For the preliminary screening purpose, the catalyst was prepared by modification of SiO2-Al2O3 mixed-oxide and characterized by TG, CHN elemental analysis and FTIR spectroscopy. Using cyclic voltammetry the electroanalytical characteristics of the catalyst have been determined, and consequently the modified mixed-oxide carbon paste electrode was constructed and applied for determination of Pb(II). The electroanalytical procedure for determination of the Pb(II) comprises two steps: the chemical accumulation of the analyte under open-circuit conditions followed by the electrochemical detection of the preconcentrated species using differential pulse anodic stripping voltammetry. During the preconcentration step, Pb(II) was accumulated on the surface of the modifier by the formation of a complex with the nitrogen atoms of the pyridyl groups in the modifier. The peak currents increases linearly with Pb(II) concentration over the range of 2.0 × 10−9 to 5.2 × 10−5 mol L−1 (r2 = 0.9995).The detection limit (three times signal-to-noise) was found to be 1.07 × 10−9 mol L−1 Pb(II). The chemical and instrumental parameters have been optimized and the effect of the interferences has been determined. The Proposed method was used for determination of lead ion in the real samples.  相似文献   

8.
In this study, the reaction conditions of poly-4-[(2-methylphenyl)iminomethyl]phenol (P-2-MPIMP) were studied by using oxidants such as air O2, H2O2 and NaOCl in an aqueous alkaline medium between 50 and 90 °C. The structures of the synthesized monomer and polymer were confirmed by FT-IR, UV-vis, NMR and elemental analysis. The characterization was made by TG-DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly-4-[(2-methylphenyl)iminomethyl]phenol (P-2-MPIMP) was found to be 20% (for air O2 oxidant), 33% (for H2O2 oxidant), and 74% (for NaOCl oxidant). According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of P-2-MPIMP were found to be 3300, 4100 g mol−1 and 1.242, using H2O2, and 4550, 5150 g mol−1and 1.132, using air O2 and 5300, 5850 g mol−1 and 1.104, using NaOCl, respectively. According to TG analysis, the weight losses of 4-[(2-methylphenyl)iminomethyl]phenol (2-MPIMP) and P-2-MPIMP were found to be between 75.29% and 48.17% at 1000 °C, respectively. P-2-MPIMP was shown to have a higher stability against thermal decomposition. Also, electrical conductivity of the P-2-MPIMP was measured, showing that the polymer is a typical semiconductor. Electrochemically, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and electrochemical energy gaps ( of 2-MPIMP and P-2-MPIMP were found to be −6.01, −6.03; −2.63, −2.82; 3.38 and 3.21 eV, respectively. According to UV-vis measurements, the optical band gap (Eg) of 2-MPIMP and P-2-MPIMP was found to be 3.40 and 2.97 eV, respectively.  相似文献   

9.
A new electrochemiluminescent (ECL) detection system equipped with an electrically controlled heating cylindrical microelectrode (HME) was developed in this paper. The cylindrical microelectrode made of platinum wire (25 μm in diameter, 6 mm in long) was used as the working electrode of the ECL detection system, the temperature of the electrode could be controlled electrically. The Ru(bpy)32+-ECL and Ru(bpy)32+-C2O42−-ECL systems were used to evaluate this ECL detection system. The detection limit for oxalate was found to be 3.0 × 10−4 mol/L when Te (temperature of the HME) was 22 °C, and found to be 3.0 × 10−6 mol/L at 80 °C, which indicates that the detection limit can be improved greatly at higher Te, based on which, it is possible to establish a more sensitive method for measurement of ECL by using a heated microelectrode.  相似文献   

10.
A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH2-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH2-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH2-IL and negatively charged catalase a sensitive H2O2 biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (ks) and Michaelis–Menten constant (KM) of immobilized catalase were 3.32 × 10−12 mol cm−2, 5.28 s−1 and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 μA mM−1 cm−2 and low detection limit of 100 nM at concentration range up to 2.1 mM.  相似文献   

11.
The complete Raman spectrum of arsenolite, cubic crystalline As4O6, is reported for the first time. The previously unseen Eg mode has been found at 443 cm−1. Further, there is additional support for the assignment of the 415 cm−1 mode as T2g.  相似文献   

12.
Qian L  Yang X 《Talanta》2006,68(3):721-727
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: −0.2 V) was from 1.67 × 10−5 to 7.40 × 10−4 M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.  相似文献   

13.
The electrochemistry and electrochemiluminescence (ECL) of novel three-dimensional nanostructured Ru(bpy)32+/Ni(OH)2 microspheres were investigated for the first time. The negatively charged porous Ni(OH)2 microspheres composed of Ni(OH)2 nanowires were specifically designed to interact with Ru(bpy)32+. The large surface area and porous structure of Ni(OH)2 microspheres enhance loading of Ru(bpy)32+ and mass transport of the model analyte, tripropylamine (TPA). Excellent ECL performance of the presented sensor was achieved including good stability and wide linear range from 7.7 × 10−10 to 3.8 × 10−3 M with the detection limit of 2.6 × 10−10 M to TPA.  相似文献   

14.
A new efficient blue phosphor, Eu2+ activated SrZnP2O7, has been synthesized at 1000 °C under reduced atmosphere and the crystal structure and photoluminescence properties have been investigated. The crystal structure of SrZnP2O7 was obtained via Rietveld refinement of powder X-ray diffraction (XRD) pattern. It was found that SrZnP2O7 crystallizes in space group of P21/n (no. 14), Z=4, and the unit cell dimensions are: a=5.30906(2) Å, b=8.21392(3) Å, c=12.73595(5) Å, β=90.1573(3)°, and V=555.390(3) Å3. Under ultraviolet excitation (200-400 nm), efficient Eu2+ emission peaked at 420 nm was observed, of which the luminescent efficiency at the optimal concentration of Eu2+ (4 mol%) was estimated to be 96% as that of BaMgAl10O17:Eu2+. Hence, the SrZnP2O7:Eu2+ exhibit great potential as a phosphor in different applications, such as ultraviolet light emitting diode and photo-therapy lamps.  相似文献   

15.
In this work, a stable electrogenerated chemiluminescence (ECL) detector was developed. The detector was prepared by packing cation-exchanged resin particles in a glass tube, followed by inserting Pt wires (working electrode) in this tube and sealing. The leakage of Ru(bpy)32+ can be compensated by adding a small amount of Ru(bpy)32+ into solution phase. Coupled with high-performance liquid chromatography separation, the detector has been used for determination of itopride hydrochloride in human serum. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of itopride hydrochloride in the range of 1.0 × 10−8 g mL−1 to 1.0 × 10−6 g mL−1 and the detection limit was 3 × 10−9 g mL−1 (S/N = 3). The as-prepared ECL detector displayed good sensitivity and stability.  相似文献   

16.
A procedure for the determination of trace level of copper(II) and cadmium(II) by FAAS using an on-line preconcentration system has been proposed. In this system, copper and cadmium ions were adsorbed onto a minicolumn packed with silica gel modified with niobium(V) oxide (Nb2O5-SiO2), followed by nitric acid elution in reverse mode and determination on-line by flame atomic absorption spectrometry (AAS) without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for copper(II) and cadmium(II) was 34.2 and 33.0, respectively, using a preconcentration time of 2 min. The limit of detection for copper(II) and cadmium(II) was 0.4, and 0.1 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 15 μg l−1 of copper and 10 μg l−1 of cadmium, by analyzing a series of seven replicates, was 1.8 and 1.6%, respectively. The accuracy was assessed through recovery experiments of certified material and water samples.  相似文献   

17.
Jiankun Duan 《Talanta》2009,79(3):734-738
A flow injection online speciation procedure by using micro-column packed with Cu(II) loaded nanometer-sized Al2O3 coupled to inductively coupled plasma mass spectrometry (ICP-MS) for the separation and determination of selenomethionine (SeMet) and selenocystine (SeCys2) has been developed. The main factors affecting the separation and preconcentration of SeMet and SeCys2 including pH value, sample flow rate, eluent concentration, eluent volume and flow rate, and interfering ions have been investigated. It was found that SeCys2 could be selectively retained by micro-column packed with Cu(II) loaded nanometer-sized Al2O3 at pH 4.0, and the retained SeCys2 could be eluted by 1.0 mol L−1 HNO3, while SeMet was not retained and passed through the micro-column directly at this pH. Both SeMet and SeCys2 could be quantitatively adsorbed by the micro-column at pH 9.0, and the retained SeMet and SeCys2 could be easily eluted with 1.0 mol L−1 HNO3. The content of SeMet was obtained by subtracting the SeCys2 from the total content of seleno amino acids. With the enrichment factor of 7.8 and 7.7, the limits of detection (LODs) for SeMet and SeCys2 were found to be 24 pg Se mL−1 and 21 pg Se mL−1, respectively. The relative standard deviations (RSDs) for SeCys2 and SeMet with seven replicate determinations of 1.0 ng mL−1 SeMet and SeCys2, were 2.1% and 1.6%, respectively, the sampling frequency of 8 h−1 was obtained. The proposed method was applied to the speciation of SeMet and SeCys2 in selenized yeast, human urine and serum with satisfactory results.  相似文献   

18.
Qiu B  Xue L  Wu Y  Lin Z  Guo L  Chen G 《Talanta》2011,85(1):339-344
Inhibited Ru(bpy)32+ electrochemiluminescence by inorganic oxidants is investigated. Results showed that a number of inorganic oxidants can quench the ECL of Ru(bpy)32+/tri-n-propylamine (TPrA) system, and the logarithm of the decrease in ECL intensity (ΔI) was proportional to the logarithm of analyte concentrations. Based on which, a sensitive approach for detection of these inorganic oxidants was established, e.g. the log-log plots of ΔI versus the concentration of MnO4, Cr2O72− and Fe(CN)63− are linear in the range of 1 × 10−7 to 3 × 10−4 M for MnO4 and Cr2O72−, and 1 × 10−7 to 1 × 10−4 M for Fe(CN)63−, with the limit of detection (LOD) of 8.0 × 10−8 M, 2 × 10−8 M, and 1 × 10−8 M, respectively. A series of experiments such as a comparison of the inhibitory effect of different compounds on Ru(bpy)32+/TPrA ECL, ECL emission spectra, UV-Vis absorption spectra etc. were investigated in order to discover how these inorganic analytes quench the ECL of Ru(bpy)32+/TPrA system. A mechanism based on consumption of TPrA intermediate (TPrA·) by inorganic oxidants was proposed.  相似文献   

19.
β−cyclodextrins (β−CD)-based inclusion complexes of CoFe2O4 magnetic nanoparticles (MNPs) were prepared and used as catalysts for chemiluminescence (CL) system using the luminol-hydrogen peroxide CL reaction as a model. The as-prepared inclusion complexes were characterized by XRD (X-ray diffraction), TGA (thermal gravimetric analysis) and FT-IR. The oxidation reaction between luminol and hydrogen peroxide in basic media initiated CL. The effect of β−CD-based inclusion complexes of CoFe2O4 magnetic nanoparticles and naked CoFe2O4 magnetic nanoparticles on the luminol-hydrogen peroxide CL system was investigated. It was found that inclusion complexes between β−CD and CoFe2O4 magnetic nanoparticles could greatly enhance the CL of the luminol-hydrogen peroxide system. Investigation on the kinetic curves and the chemiluminescence spectra of the luminol-hydrogen peroxide system demonstrates that addition of CoFe2O4 MNPs or inclusion complexes between β−CD and CoFe2O4 MNPs does not produce a new luminophor of the chemiluminescent reaction. The luminophor for the CL system was still the excited-state 3-aminophthalate anions (3-APA*). The enhanced CL signals were thus ascribed to the possible catalysis from CoFe2O4 MNPs or inclusion complexes between β−CD and CoFe2O4 nanoparticles. The feasibility of employing the proposed system for hydrogen peroxide sensing was also investigated. Experimental results showed that the CL emission intensity was linear with hydrogen peroxide concentration in the range of 1.0 × 10−7 to 4.0 × 10−6 mol L−1 with a detection limit of 2.0 × 10−8 mol L−1 under optimized conditions. The proposed method has been used to determine hydrogen peroxide in water samples successfully.  相似文献   

20.
LiMn2O4 was treated with F2 at room temperature (RT), 373 and 473 K under 1.3, 6.6 and 13.2 kPa-F2. XPS data indicate that two kinds of fluorine species may exist on the sample surface and the ratio of these fluorines is affected by choosing the reaction condition. The peak indicating Mnn+ bonded to fluorine appeared in the XPS spectra of Mn2p3/2 electron. From the results of the charge/discharge measurements, the efficiency of charge/discharge process for the sample fluorinated under 1.3, 6.6 and 13.2 kPa-F2 below 373 K was larger than that of untreated one. The discharge capacity of the fluorinated sample was also larger than that of untreated one. The discharge capacity, the loss of discharge capacity during 50 charge/discharge cycles, F/O ratio measured from XPS data and the intensity of the peak indicating Mnn+ bonded to fluorine in the XPS spectra were closely related to each other. The optimal fluorination condition was under 1.3 kPa-F2 at RT for 1 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号