首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Changes in the conformation of the units within the peptide chain are the elementary processes in the folding of a protein into its native three-dimensional structure. Even a few years ago protein folding in vivo was considered to be an autonomous process not requiring the help of enzymes or auxiliary substances. Recently an increasing number of proteins that assist in the folding process have been found; these include enzymes that catalyze conformational interconversions. The cis/trans isomerization of the petptide bond N-terminal to a praline residue is catalyzed by peptidyl-prolyl cis/trans isomerases (PPIases). Two families of these ubiquitous and phylogenetically highly conserved enzymes are known, the cyclophilins and FK506-binding proteins. Their catalytic activity is extremely highmdash;the rate constants for the bimolecular reactions they catalyze approach the diffusion-controlled limit for enzyme-substrate reactions. These enzymes increase the rate of isomerization in oligopeptides as well as in intermediate in protein folding. It is not yet known which structural units in the cell serve as substrates and exactly which reactions are catalyzed. However, these isomerases have been shown to interact with the heat shock proteins of the nonactivated steroid receptors and with the gag polyprotein of the AIDS HIV-1 virus. The immunosuppressive agents cyclosporine A and FK506 are highly effective inhibitors for PPIases. Surprisingly these compounds affect the signal cascade of T cells but not through enzyme inhibition; the inhibitor-enzyme complexes themselves are the active agents. These complexes exhibit properties not displayed by the individual components and thus are able to affect other cellular components. The current model of the suppression of the antigen- and mitogen-stimulated clonal expansion of T cells is presented here.  相似文献   

2.
Cell-free protein synthesis is a promising technique for the rapid production of proteins. However, the application of the cell-free systems requires the development of an artificial chaperone that prevents aggregation of the protein and supports its correct folding. Here, nanogel-based artificial chaperones are introduced that improve the folding efficiency of rhodanese produced in cell-free systems. Although rhodanese suffers from rapid aggregation, rhodanese was successfully expressed in the presence of the nanogel and folded to the enzymatically active form after addition of cyclodextrin. To validate the general applicability, the cell-free synthesis of ten water-soluble proteins was examined. It is concluded that the nanogel enables efficient expression of proteins with strong aggregation tendency.  相似文献   

3.
Molecular chaperones are diverse families of proteins that play key roles in protein homeostasis. They assist the folding of client proteins or prevent them from irreversible aggregation under stress conditions. Diverse chaperone families contribute to different aspects of protein homeostasis by interacting with a wide range of client proteins. Despite the vital roles of chaperones in cell survival, the molecular mechanisms underlying chaperone functions remain elusive, due to the non‐specificity of chaperone‐client interactions and the intrinsic flexibility of the clients. Our understanding of the chaperone functional mechanisms, especially regarding chaperone‐client interactions, has greatly expanded in recent years, thanks to the significant contribution from various NMR studies. Solution NMR methods have unique advantages in characterizing disordered protein structures, detecting weak and non‐specific interactions, and probing conformational dynamics of proteins and protein complexes, etc., and therefore are especially powerful in the studies of chaperone structure‐function relationships. In this review, we summarize some of the current knowledge of molecular chaperones, with emphasis on common features of chaperone‐client interactions and examples on a number of specific systems in which solution NMR methods were used to provide essential insights into their functional mechanisms.   相似文献   

4.
Folding of polypeptides in the cell typically requires the assistance of a set of proteins termed molecular chaperones. Chaperones are an essential group of proteins necessary for cell viability under both normal and stress conditions. There are several chaperone systems which carry out a multitude of functions all aimed towards insuring the proper folding of target proteins. Chaperones can assist in the efficient folding of newly-translated proteins as these proteins are being synthesized on the ribosome and can maintain pre-existing proteins in a stable conformation. Chaperones can also promote the disaggregation of preformed protein aggregates. Many of the identified chaperones are also heat shock proteins. The general mechanism by which chaperones carry out their function usually involves multiple rounds of regulated binding and release of an unstable conformer of target polypeptides. The four main chaperone systems in the Escherichia coli cytoplasm are as follows. (1) Ribosome-associated trigger factor that assists in the folding of newly-synthesized nascent chains. (2) The Hsp 70 system consisting of DnaK (Hsp 70), its cofactor DnaJ (Hsp 40), and the nucleotide exchange factor GrpE. This system recognizes polypeptide chains in an extended conformation. (3) The Hsp 60 system, consisting of GroEL (Hsp 60) and its cofactor GroES (Hsp 10), which assists in the folding of compact folding intermediates that expose hydrophobic surfaces. (4) The Clp ATPases which are typically members of the Hsp 100 family of heat shock proteins. These ATPases can unfold proteins and disaggregate preformed protein aggregates to target them for degradation. Several advances have recently been made in characterizing the structure and function of all of these chaperone systems. These advances have provided us with a better understanding of the protein folding process in the cell.  相似文献   

5.
Molecular chaperones--cellular machines for protein folding   总被引:10,自引:0,他引:10  
Proteins are linear polymers synthesized by ribosomes from activated amino acids. The product of this biosynthetic process is a polypeptide chain, which has to adopt the unique three-dimensional structure required for its function in the cell. In 1972, Christian Anfinsen was awarded the Nobel Prize for Chemistry for showing that this folding process is autonomous in that it does not require any additional factors or input of energy. Based on in vitro experiments with purified proteins, it was suggested that the correct three-dimensional structure can form spontaneously in vivo once the newly synthesized protein leaves the ribosome. Furthermore, proteins were assumed to maintain their native conformation until they were degraded by specific enzymes. In the last decade this view of cellular protein folding has changed considerably. It has become clear that a complicated and sophisticated machinery of proteins exists which assists protein folding and allows the functional state of proteins to be maintained under conditions in which they would normally unfold and aggregate. These proteins are collectively called molecular chaperones, because, like their human counterparts, they prevent unwanted interactions between their immature clients. In this review, we discuss the principal features of this peculiar class of proteins, their structure-function relationships, and the underlying molecular mechanisms.  相似文献   

6.
Methylotrophic yeast Pichia pastoris is convenient for the expression of eukaryotic foreign proteins owing to its potential for posttranslational modifications, protein folding, and facile culturing. In this work, human interleukin (hIL)-2 was successfully produced as a secreted fusion form in recombinant P. pastoris. By employing green fluorescent protein (GFP) as a monitoring fusion partner, clear identification of fusion protein expression and quantification of intracellular hIL-2 were possible even though there was no correlation between culture supernatant fluorescence and secreted hIL-2 owing to high media interference. Importantly, by the addition of casamino acids in basal medium, we were able to enhance threefold amount of secreted hIL-2, which was present both as a fusion and as a clipped fragment.  相似文献   

7.
An approach for re‐folding denatured proteins during proteome research by protein folding liquid chromatography (PFLC) is presented. Standard protein, α‐chymotrypsin (α‐Chy), was selected as a model protein and hydrophobic interaction chromatography was performed as a typical PFLC; the three different α‐Chy states – urea‐denatured (U state), its folded intermediates (M state) and nature state (N state) – were studied during protein folding. Based on the test by matrix‐assisted laser desorption/ionization time of flight mass spectrometry and bioactivity, only one stable M state of the α‐Chy was identified and then it was prepared for further investigation. The specific bioactivity of the refolded α‐Chy was found to be higher than that of commercial α‐Chy as the urea concentration in the sample solution ranged from 1.0 to 3.0 m ; the highest specific bioactivity at urea concentration was 1.0 m , indicating the possibility for re‐folding some proteins that have partially or completely lost their bioactivity, as a dilute urea solution was employed for dissolving the sample. The experiment showed that the peak height of its M state increased with increasing urea concentration, and correspondingly decreased in the amount of the refolded α‐Chy. When the urea concentration reached 6.0 m , the unfolded α‐Chy could not be refolded at all. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Human neurodegenerative diseases arise from a wide array of genetic and environmental factors. Despite the diversity in etiology, many of these diseases are considered "conformational" in nature, characterized by the accumulation of pathological, misfolded proteins. These misfolded proteins can induce cellular stress by overloading the proteolytic machinery, ultimately resulting in the accumulation and deposition of aggregated protein species that are cytotoxic. Misfolded proteins may also form aberrant, non-physiological protein-protein interactions leading to the sequestration of other normal proteins essential for cellular functions. The progression of such disease may therefore be viewed as a failure of normal protein homeostasis, a process that involves a network of molecules regulating the synthesis, folding, translocation and clearance of proteins. Molecular chaperones are highly conserved proteins involved in the folding of nascent proteins, and the repair of proteins that have lost their typical conformations. These functions have therefore made molecular chaperones an active area of investigation within the field of conformational diseases. This review will discuss the role of molecular chaperones in neurodegenerative diseases, highlighting their functional classification, regulation, and therapeutic potential for such diseases.  相似文献   

9.
固体表面特征对脲变α-糜蛋白酶折叠的贡献   总被引:1,自引:0,他引:1  
刘振岭  柯从玉  李建军  耿信笃 《化学学报》2007,65(21):2411-2416
以脲变α-糜蛋白酶(α-Chy)为模型蛋白, 用蛋白折叠液相色谱法研究了该蛋白在7种不同固体表面上的折叠及其在折叠过程中形成的中间体, 选用疏水相互作用色谱(HPHIC)固定相为吸附剂, 在动态条件下着重研究了疏水色谱固定相TSK和PEG-600表面对脲变α-Chy复性效率的贡献. 用基质辅助激光解吸附离子化飞行时间质谱对3.0 mol•L-1脲变α-Chy, 在经 HPHIC柱复性并同时分离的收集组分进行确认后, 仅有一种稳定的脲变α-Chy折叠中间体. 发现PEG-600固定相表面较TSK固定相对α-Chy复性效果好. 证实了疏水性强度及固体表面配基的结构对蛋白折叠起着关键性的作用.  相似文献   

10.
11.
Protein disulfide isomerase (PDI) enzymes are eukaryotic oxidoreductases that catalyze the correct formation of disulfide bonds during protein folding. Structurally they are characterized by the presence of functional thioredoxin-like (Trx) domains. For the protozoan parasite causative of the human amebiasis (Entamoeba histolytica), the correct formation of disulfide bonds is important for an accurate folding of its proteins, including some virulence factors. However, little is known about the enzymes involved in this mechanism. We undertook a post-genomic approach to identify the PDI family of this parasite. The genome database survey revealed a set of 11 PDI-encoding sequences with predictable protein thiol/disulfide oxidoreductase activities.  相似文献   

12.
Protein folding quality control in cells requires the activity of a class of proteins known as molecular chaperones. Heat shock protein-90 (Hsp90), a multidomain ATP driven molecular machine, is a prime representative of this family of proteins. Interactions between Hsp90, its co-chaperones, and client proteins have been shown to be important in facilitating the correct folding and activation of clients. Hsp90 levels and functions are elevated in tumor cells. Here, we computationally predict the regions on the native structures of clients c-Abl, c-Src, Cdk4, B-Raf and Glucocorticoid Receptor, that have the highest probability of undergoing local unfolding, despite being ordered in their native structures. Such regions represent potential ideal interaction points with the Hsp90-system. We synthesize mimics spanning these regions and confirm their interaction with partners of the Hsp90 complex (Hsp90, Cdc37 and Aha1) by Nuclear Magnetic Resonance (NMR). Designed mimics selectively disrupt the association of their respective clients with the Hsp90 machinery, leaving unrelated clients unperturbed and causing apoptosis in cancer cells. Overall, selective targeting of Hsp90 protein–protein interactions is achieved without causing indiscriminate degradation of all clients, setting the stage for the development of therapeutics based on specific chaperone:client perturbation.  相似文献   

13.
Metamorphic proteins are biomolecules prone to adopting alternative conformations. Because of this feature, they represent ideal systems to investigate the general rules allowing primary structure to dictate protein topology. A comparative molecular dynamics study was performed on the denatured states of two proteins, sharing nearly identical amino‐acid sequences (88 %) but different topologies, namely an all‐α‐helical bundle protein named GA88 and an α+β‐protein named GB88. The analysis allowed successful design of and experimental validation of a site‐directed mutant that promotes, at least in part, the switch in folding from GB88 to GA88. The mutated position, in which a glutamic acid was replaced by a glutamine, does not make any intramolecular interactions in the native state of GA88, such that its stabilization can be explained by considering the effects on the denatured state. The results represent a direct demonstration of the role of the denatured state in sculpting native structure.  相似文献   

14.
One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light‐harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar‐energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer‐based membrane systems containing LHCII–pigment complexes ready for light harvesting. LHCII was produced by cell‐free protein synthesis based on wheat‐germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins.  相似文献   

15.
In the last few decades, development of novel experimental techniques, such as new types of disulfide (SS)-forming reagents and genetic and chemical technologies for synthesizing designed artificial proteins, is opening a new realm of the oxidative folding study where peptides and proteins can be folded under physiologically more relevant conditions. In this review, after a brief overview of the historical and physicochemical background of oxidative protein folding study, recently revealed folding pathways of several representative peptides and proteins are summarized, including those having two, three, or four SS bonds in the native state, as well as those with odd Cys residues or consisting of two peptide chains. Comparison of the updated pathways with those reported in the early years has revealed the flexible nature of the protein folding pathways. The significantly different pathways characterized for hen-egg white lysozyme and bovine milk α-lactalbumin, which belong to the same protein superfamily, suggest that the information of protein folding pathways, not only the native folded structure, is encoded in the amino acid sequence. The application of the flexible pathways of peptides and proteins to the engineering of folded three-dimensional structures is an interesting and important issue in the new realm of the current oxidative protein folding study.  相似文献   

16.
Proteins can be exposed to vastly different environments such as the cytosol or membranes, but the delicate balance between external factors and intrinsic determinants of protein structure, stability, and folding is only poorly understood. Here we used electron capture dissociation to study horse and tuna heart Cytochromes c in the complete absence of solvent. The significantly different stability of their highly similar native folds after transfer into the gas phase, and their strikingly different folding behavior in the gas phase, can be rationalized on the basis of electrostatic interactions such as salt bridges. In the absence of hydrophobic bonding, protein folding is far slower and more complex than in solution.  相似文献   

17.
Nonoverlapping closed loops of around 25–35 amino acids formed via nonlocal interactions at the loop ends have been proposed as an important unit of protein structure. This hypothesis is significant as such short loops can fold quickly and so would not be bound by the Leventhal paradox, giving insight into the possible nature of the funnel in protein folding. Previously, these closed loops have been identified either by sequence analysis (conservation and autocorrelation) or studies of the geometry of individual proteins. Given the potential significance of the closed loop hypothesis, we have explored a new strategy for determining closed loops from the insertions identified by the structural alignment of proteins sharing the same overall fold. We determined the locations of the closed loops in 37 pairs of proteins and obtained excellent agreement with previously published closed loops. The relevance of NMR structures to closed loop determination is briefly discussed. For cytochrome c, cytochrome b562 and triosephophate isomerase, independent folding units have been determined on the basis of hydrogen exchange experiments and misincorporation proton‐alkyl exchange experiments. The correspondence between these experimentally derived foldons and the theoretically derived closed loops indicates that the closed loop hypothesis may provide a useful framework for analyzing such experimental data. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

18.
In live cells, protein folding often cannot occur spontaneously, but requires the participation of helper proteins - molecular chaperones and foldases. The mechanisms employed by chaperones markedly increase the effectiveness of protein folding, but have no bearing on the rate of this process, whereas foldases actually accelerate protein folding by exerting a direct influence on the rate-limiting steps of the overall reaction. Two types of foldases are known, using different principles of action. Peptidyl-prolyl cis/trans isomerase and protein-disulfide isomerase catalyze the folding of every protein that needs isomerization of prolyl peptide bonds or formation and isomerization of disulfide bonds for proper folding. By contrast, some foldases operating in the periplasm of bacterial cells are specifically designed to help in the folding of substrate proteins whose primary structure does not contain sufficient information for correct folding. In this review, we discuss recent data on the catalytic mechanisms of both types of foldases, focusing specifically on how a catalyst provides the structural information required for the folding of a target protein. Comparative analysis of the mechanisms employed by two different periplasmic foldases is used to substantiate the notion that combinations of a protein which is unable to fold independently and a specific catalyst delivering the necessary steric information are probably designed to achieve some particular biological purposes. The review also covers the problem of participation of peptidyl-prolyl cis/trans isomerase in different cellular functions, highlighting the role of this enzyme in conformational rearrangements of folded native proteins.  相似文献   

19.
A protein can exist in multiple states under native conditions and those states with low populations are often critical to biological function and self‐assembly. To investigate the role of the minor states of an acyl carrier protein, NMR techniques were applied to determine the number of minor states and characterize their structures and kinetics. The acyl carrier protein from Micromonospora echinospora was found to exist in one major folded state (95.2 %), one unfolded state (4.1 %), and one intermediate state (0.7 %) under native conditions. The three states are in dynamic equilibrium and the intermediate state very likely adopts a native‐like structure and is an off‐pathway folding product. The intermediate state may mediate the formation of oligomers in vitro and play an important role in the recognition of partner enzymes in vivo.  相似文献   

20.
Natural enzymes have arisen over millions of years by the gradual process of Darwinian evolution. The fundamental steps of evolution-mutation, selection, and amplification-can also be exploited in the laboratory to create and characterize protein catalysts on a human timescale. In vivo genetic selection strategies enable the exhaustive analysis of protein libraries with 10(10) different members, and even larger ensembles can be studied with in vitro methods. Evolutionary approaches can consequently yield statistically meaningful insight into the complex and often subtle interactions that influence protein folding, structure, and catalytic mechanism. Such methods are also being used increasingly as an adjunct to design, thus providing access to novel proteins with tailored catalytic activities and selectivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号