首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potential energy surfaces and vibrational spectra for the four isotopomers (l5N14N16O,l4NI5N16O,15N2 16O and15N2 18O) of N2O have been investigated with the vibrational self-consistent field-configuration interaction method. It is shown that the isotopomers with the same end atom have similar values of the potential parameters, and that substitution with different end atoms can affect the potential obviously. The calculated vibrational levels are in good agreement with the observed values by the optimization of several potential parameters (f 1 (1),f 13 (0),f 3 (1) which are sensitive to isotopic substitutions. Project supported by the National Natural Science Foundation of China (Grant No. 29673029).  相似文献   

2.
Pure rotational transitions of the weakly bound complex He-N(2)O and three minor isotopomers (He-(14)N(15)NO, He-(15)N(14)NO, and He-(15)N(15)NO) were measured in the frequency region from 6 to 20 GHz. Predictions for the microwave transition frequencies were based on the infrared work by Tang and McKellar [J. Chem. Phys. 117, 2586 (2002)]. In the case of (14)N containing isotopomers, nuclear quadrupole hyperfine structure of the rotational transitions was observed and analyzed. The resulting spectroscopic parameters were used to determine geometrical and dynamical information about the complex. An ab initio potential energy surface was calculated at the coupled cluster level of theory with single and double excitations and perturbative inclusion of triple excitations. This surface was constructed using the augmented correlation consistent polarized valence triple zeta basis set for all atoms with the inclusion of bond functions for the van der Waals bond. Bound state calculations were done to determine the energies of low-lying rovibrational levels that are supported by the potential energy surface. The resulting transition energies agree with the experimental values to 1% or better.  相似文献   

3.
LMR spectra for v=1←0 transitions of 14N16O in X2Π1/2,3/2 states were observed at 5.6 μm and 5.4 μm of CO laser. Introducing the advanced isotopic molecular constant scaling function to Hund's case (a) diatomic structure model, these spectra were analyzed and fitted together with all reliable previous spectral data of 14N16O as well as 14N17O and 14N18O. A full set of precise molecular parameters and their vibrational dependencies have been determined with much higher precision (1 -2 orders for most parameters). Many of them have been obtained for the first time. Using isotopic scaling function, the molecular constants of 14N17O and 14N18O were deduced.  相似文献   

4.
We have measured the rotationless photodissociation threshold of six isotopologues of NO2 containing 14N, 15N, 16O, and 18O isotopes using laser induced fluorescence detection and jet cooled NO2 (to avoid rotational congestion). For each isotopologue, the spectrum is very dense below the dissociation energy while fluorescence disappears abruptly above it. The six dissociation energies ranged from 25 128.56 cm(-1) for 14N16O2 to 25 171.80 cm(-1) for 15N18O2. The zero point energy for the NO2 isotopologues was determined from experimental vibrational energies, application of the Dunham expansion, and from canonical perturbation theory using several potential energy surfaces. Using the experimentally determined dissociation energies and the calculated zero point energies of the parent NO2 isotopologue and of the NO product(s) we determined that there is a common De = 26 051.17+/-0.70 cm(-1) using the Born-Oppenheimer approximation. The canonical perturbation theory was then used to calculate the zero point energy of all stable isotopologues of SO2, CO2, and O3, which are compared with previous determinations.  相似文献   

5.
The first ab initio potential energy surface of the Kr-OCS complex is developed using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)]. The mixed basis sets, aug-cc-pVTZ for the O, C, and S atom, and aug-cc-pVQZ-PP for the Kr atom, with an additional (3s3p2d1f) set of midbond functions are used. A potential model is represented by an analytical function whose parameters are fitted numerically to the single point energies computed at 228 configurations. The potential has a T-shaped global minimum and a local linear minimum. The global minimum occurs at R = 7.146 a(0), θ = 105.0° with energy of -270.73 cm(-1). Bound state energies up to J = 9 are calculated for three isotopomers (82)Kr-OCS, (84)Kr-OCS, and (86)Kr-OCS. Analysis of the vibrational wavefunctions and energies suggests the complex can exist in two isomeric forms: T-shaped and quasi-linear. The calculated transition frequencies and spectroscopic constants of the three isotopomers are in good agreement with the experimental values.  相似文献   

6.
The first two-dimensional potential energy surface for the Xe-CO van der Waals interaction is calculated by the single and double excitation coupled-cluster theory with noniterative treatment of triple excitations. Mixed basis sets, aug-cc-pVQZ for the C and O atoms, and aug-cc-pVQZ-PP for the Xe atom, with an additional (3s3p2d2f1g) set of midbond functions, are used. Our potential energy surface has a single, nearly T-shaped minimum of -131.87 cm(-1) at R(e)=7.80a(0) and theta(e)=102.5 degrees. Based on the potential, the bound state energies are calculated for seven isotopomers of the Xe-(12)C(16)O complex, seven isotopomers of the Xe-(13)C(16)O complex, and three isotopomers of the Xe-(13)C(18)O complex. Compared with available experimental data, the predicted transition frequencies and spectroscopic constants are in good agreement with the experimental results.  相似文献   

7.
(Microwave spectra of the four isotopologue/isotopomers, HI-(12)C(16)O(2), HI-(12)C(18)O(2), HI-(12)C(18)O(16)O, and HI-(12)C(16)O(18)O, have been recorded using pulsed-nozzle Fourier transform microwave spectroscopy. In the last two isotopomers, the heavy oxygen atom tilted toward and away from the HI moiety, respectively. Only b-type Ka = 1 <-- 0 transitions were observed. Spectral analysis provided molecular parameters including rotational, centrifugal distortion, and quadrupole constants for each isotopomer. Then, a four-dimensional intermolecular energy surface of a HI-CO2 complex was generated, morphing the results of ab initio calculations to reproduce the experimental data. The morphed potential of HI-(12)C(16)O(2) had two equivalent global minima with a well depth of 457(14) cm(-1) characterized by a planar quasi-T-shaped structure with the hydrogen atom tilted toward the CO2 moiety, separated by a barrier of 181(17) cm(-1). Also, a secondary minimum is present with a well depth of 405(14) cm(-1) with a planar quasi-T-shaped structure with the hydrogen atom tilted away from the CO2 moiety. The ground state structure of HI-(12)C(16)O(2) was determined to have a planar quasi-T-shaped geometry with R = 3.7717(1) A, thetaOCI = 82.30(1) degrees , thetaCIH = 71.55(1) degrees . The morphed potential obtained is now available for future studies of the dynamics of photoinitiated reactions of this complex.  相似文献   

8.
The ground-state rotational spectra of the six isotopomers (16)O(2) (14)N(35)Cl, (16)O(2) (14)N(37)Cl, (18)O(16)O(14)N(35)Cl, (18)O(2) (14)N(35)Cl, (16)O(2) (15)N(35)Cl, and (16)O(2) (15)N(37)Cl of nitryl chloride were observed with a pulsed-jet, Fourier-transform microwave spectrometer to give rotational constants, Cl and (14)N nuclear quadrupole coupling, and spin-rotation coupling constants. These spectroscopic constants were interpreted to give r(0), r(s), and r(m) ((2)) versions of the molecular geometry and information about the electronic redistribution at N when nitryl chloride is formed from NO(2) and a Cl atom. The r(m) ((2)) geometry has r(N-Cl)=1.8405(6) A, r(N-O)=1.1929(2) A, and the angle ONO=131.42(4) degrees , while the corresponding quantities for the r(s) geometry are 1.8489 A, 1.1940 A, and 131.73 degrees , respectively. Electronic structure calculations at CCSD(T)cc-pVXZ (X=T, Q, or 5) levels of theory were carried out to give a r(e) geometry, vibration-rotation corrections to equilibrium rotational constants, and values of the (35)Cl and (14)N nuclear hyperfine (quadrupole and spin-rotation) coupling constants in good agreement with experiment. The equilibrium geometry at the CCSD(T)/cc-pV5Z level of theory has r(N-Cl)=1.8441 A, r(N-O)=1.1925 A and the angle ONO=131.80 degrees . The observed rotational constants were corrected for the vibration-rotation effects calculated ab initio to yield semiempirical equilibrium constants which were then fitted to give the following semiempirical equilibrium geometry: r(N-Cl)=1.8467(2) A, r(N-O)=1.1916(1) A, and the angle ONO=131.78(3) degrees .  相似文献   

9.
There is an urgent need to provide an accurate, up-to-date estimate of N(2)O fluxes in order that national policies can be developed to reduce emissions of N(2)O from soils. There are only limited data on temporal and diurnal patterns of N(2)O fluxes to the atmosphere, mainly due to constraints in the measurement techniques. In this paper we present the first terrestrial source values of N(2)O isotopomers and have measured and quantified the temporal and diurnal variability in N(2)O fluxes following urine addition to a grassland system in the UK. The experiment was carried out over a 2-week period on an artificially drained grassland system at the Institute of Grassland and Environmental Research (IGER), North Wyke, UK. Duplicate samples of urine, each of 2 L, were collected from dairy cows and applied to chambers (of area 0.16 m(2)). The N(2)O diurnal fluxes from urine and control (no urine) plots were measured by an automatic closed chamber technique. The isotopomers of N(2)O were obtained by analysing the gas samples collected during a peak emission phase. Soil and meteorological data were also collected. The results showed strong diurnal variations in N(2)O fluxes with minimum fluxes generally occurring between 7:00 and 14:00 hrs. The total cumulative flux of N(2)O for the whole experimental period was higher by a factor of >2 compared with estimates based on the daytime (between 10.00-16.00 hrs) measurements only. Therefore, measurements of N(2)O fluxes based on daily single exposure and expressed on a 24-h basis could impose a considerable bias and inaccuracy to the emission estimates, depending on when it was taken. The measured site preference values (difference between the centre (delta(15)Nalpha) and the end (delta(15)Nbeta) N atom of the N(2)O molecule) for soil-emitted N(2)O measured during our study were always lower than the tropospheric value. This work confirms that the enhanced tropospheric N(2)O site preference value could be the result of the back injection from the stratosphere. The intramolecular isotope ratios of nitrogen (delta(15)N) and oxygen (delta(18)O) and the site preference of the emitted N(2)O indicated that there was a shift of processes during the measurement period.  相似文献   

10.
An ab initio potential energy surface for the Ar--OCS dimer was calculated using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)] with a large basis set containing bond functions. The interaction energies were obtained by the supermolecular approach with the full counterpoise correction for the basis set superposition error. The CCSD(T) potential was found to have two minima corresponding to the T-shaped and the collinear Ar--SCO structures. The two-dimensional discrete variable representation method was employed to calculate the rovibrational energy levels for five isotopomers Ar--OCS, Ar--OC34S, Ar--O13CS, Ar--18OCS, and Ar--17OCS. The calculated pure rotational transition frequencies for the vibrational ground state of the five isotopomers are in good agreement with the observed values. The corresponding microwave spectra show that the b-type transitions (Delta Ka = +/-1) are significantly stronger than the a-type transitions (Delta Ka = 0). Minimum-energy structures of the Ar2--OCS trimer were been determined with MP2 optimization, whereas the minimum-energy structures of the Arn--OCS clusters with n = 3-14 were obtained with the pairwise additive potentials. It was found that there are two minima corresponding to one distorted tetrahedral structure and one planar structure for the ternary complex. The 14 nearest neighbor Ar atoms form the first solvation shell around the OCS molecule.  相似文献   

11.
Infrared spectra of helium clusters seeded with doubly substituted carbon monoxide molecules, 13C18O, have been studied in order to complement recent helium nanocluster results and to determine whether additional isotopic data would help to separate vibrational and rotational contributions to the observed transitions. The experiments were made by direct infrared absorption in pulsed supersonic jet expansions using a tunable diode laser probe in the region of the fundamental band (approximately 2045 cm-1 for 13C18O). Even with data on the R0 transitions from four CO isotopomers, it was found that a clear and consistent separation of vibration and rotation could not be achieved for HeN-CO clusters in the size range N approximately 10-20. Isotope shifts observed for clusters with 13C18O (relative to 12C16O) were found to be close to the sums of the shifts previously determined for 13C16O and 12C18O. The new measurements generally supported previous assignments of cluster size, but some modifications for the range N=14-16 are suggested here. New measurements for HeN-12C16O under conditions favoring larger clusters (high backing pressure and low jet temperature) showed that individual transitions could be resolved even at N approximately 50. For larger clusters, a partly resolved "lump" of transitions was observed to approach the nanodroplet limit.  相似文献   

12.
A high resolution Fourier transform spectrometry analysis of the rotational structure of the 2(0)1 absorption bands of the 3A2<--X1A1 Wulf transition for the isotopomers 16O3 and 18O3 of the ozone molecule is presented. These bands are very intense compared to the 0(0)0 bands but the predissociation is so strong that the main sub-bands appear as continuous contours. Isolated lines and band contour methods are used together to analyse these two rovibrational bands. The lines corresponding to the F2 component are generally the most intense and isolated. Our data sets for the (0 1 0) level of the 3A2 state are limited to about 102 weakly or unperturbed rotational lines for the 2(0)1 of 16O3 in the range 9620-10,140 cm(-1) and 123 weakly or unperturbed rotational lines for the same band of 18O3. Using for each of them the well-defined ground state parameters, we obtained a standard deviation of about 0.035 cm(-1) in the fit to the lines for 16O3 and 0.027 cm(-1) in the case of 18O3. The rotational constants A, B and C, the three rotational distortion terms deltaK, deltaJK and deltaJ, the spin-rotation constants a0, a and b have been successfully calculated for 16O3 and 18O3 while the spin-spin constants were fixed to their respective values obtained for the origin bands. As is the case for the 0(0)0 band, we have a partial agreement with the isotopic laws for the rotational constants. The geometrical parameters of the (0 1 0) level of 3A2 state for the two isotopomers are close, r = 1.357 A, theta = 100.7 degrees for 18O3 and r = 1.352 A and theta = 100.0 degrees for 16O3. The origin of the 2(0)1 band of 18O3 is red shifted by 7.06(4) cm(-1) with respect to 16O3 2(0)1 band and the two bending mode quanta are, respectively, 528.99(9) and 501.34(7) cm(-1). A preliminary qualitative analysis of the predissociation is given in the particular case of the F2 spin component of 16O3 for 0(0)0 and 2(0)1 bands by the measurement of shifts of positions of some rovibrational levels and the evolution of predissociation broadenings in (Q)Q2 branches. We justify the existence of perturbations in the rovibrational levels of 3A2 state through different interaction types: with the dissociation continuum of the same electronic state or with high vibrational repulsive or weakly bound levels of the ground state.  相似文献   

13.
Mid-infrared attenuated total internal reflection (ATR) spectra of H(2)16O, H(2)18O and D(2)16O in the liquid state were obtained and normal coordinate analysis was performed based on the potential energy surface obtained from density functional theory (DFT) calculations. Fits of the spectra to multiple Gaussians showed a consistent fit of three bands for the bending region and five bands for the stretching region for three isotopomers, H(2)16O, H(2)18O and D(2)16O. The results are consistent with previous work and build on earlier studies by the inclusion of three isotopomers and mixtures using the advantage of single-pass ATR to obtain high quality spectra of the water stretching bands. DFT calculation of the vibrational spectrum of liquid water was conducted on seven model systems, two systems with periodic boundary conditions (PBC) consisting of four and nine H(2)16O molecules, and five water clusters consisting of 4, 9, 19, 27 and 32 H(2)16O molecules. The PBC and cluster models were used to obtain a representation of bulk water for comparison with experiment. The nine-water PBC model was found to give a good fit to the experimental line shapes. A difference is observed in the broadening of the water bending and stretching vibrations indicative of a difference in the rate of pure dephasing. The nine-water PBC calculation was also used to calculate the wavenumber shifts observed in the water isotopomers.  相似文献   

14.
The complete vibrational analysis of [(1-MeIm)Fe(OEP)-CN-Cu(Me(6)tren)](2+) (1), which has been constructed as a model for the cyanide-ligated binuclear center in the respiratory protein cytochrome c oxidase, has been carried out. The resonance Raman spectra (lambda(exc) = 647 nm) and the mid-infrared spectra display three cyanide isotope-dependent vibrational modes. Two vibrations showed monotonic decreases with increasing mass of the cyanide ligand (2182-2137-2146-2101 cm(-)(1) and 535-526-526-520 cm(-)(1), respectively, for the (12)C(14)N-(13)C(14)N-(12)C(15)N-(13)C(15)N isotopomers), and could thus be assigned to the C&tbd1;N and Fe-CN-Cu stretching vibrations, respectively. The third vibration, detected with resonance Raman, showed a zigzag-type behavior (495-487-493-485 cm(-)(1) with the set of isotopomers above) with the frequency being more sensitive to (13)C labeling of the cyanide ligand than with (15)N labeling. This pattern of isotopic dependence is characteristic of a bending vibration. Additionally, with the same laser excitation frequency, the C&tbd1;N stretching mode was observed, which is the first time that this vibration has been detected in the resonance Raman spectrum of a synthetic heme-cyanide complex. The normal coordinate analysis showed marked differences between bridged and unbridged heme-cyanide complexes. Internal coordinates that are orthogonal in unbridged systems are significantly mixed in the bridged model, despite the overall linearity of the Fe-CN-Cu moiety. These measurements strengthen the proposal that cyanide bridges the two metal atoms in the cyanide-ligated, oxidized binuclear center of cytochrome c oxidase. A quantitative consideration of the vibrational characteristics of cyanide bound to the resting enzyme, in light of our model compound results, strongly suggests that the binuclear center is flexible and can undergo structural rearrangement to accommodate exogenous ligands. This is likely to be of mechanistic importance in both dioxygen reduction and proton translocation.  相似文献   

15.
We demonstrate a high-precision measurement of the isotopomer abundance ratio 14N(15)N(16)O/15N(14)N(16)O/14N(14)N(16)O (approximately 0.37/0.37/100) using three wavelength-modulated 2 microm diode lasers combined with a multipass cell which provides different optical pathlengths of 100 and 1 m to compensate the large abundance difference. A set of absorption lines for which the absorbances have almost the same temperature dependence are selected so that the effect of a change in gas temperature is minimized. The test experiment using pure nearly natural-abundance N(2)O samples showed that the site-selective 15N/14N ratios can be measured relative to a reference material with a precision of +/-3 x 10(-4) (+/-0.3 per thousand) in approximately 2 h.  相似文献   

16.
Lifetimes of several (1)Pi(u) states of the three natural isotopomers of molecular nitrogen, (14)N(2), (14)N(15)N, and (15)N(2), are determined via linewidth measurements in the frequency domain. Extreme ultraviolet (XUV)+UV two-photon ionization spectra of the b (1)Pi(u)(v=0-1,5-7) and c(3) (1)Pi(u)(v=0) states of (14)N(2), b (1)Pi(u)(v=0-1,5-6) and c(3) (1)Pi(u)(v=0) states of (14)N(15)N, and b (1)Pi(u)(v=0-7), c(3) (1)Pi(u)(v=0), and o (1)Pi(u)(v=0) states of (15)N(2) are recorded at ultrahigh resolution, using a narrow band tunable XUV-laser source. Lifetimes are derived from the linewidths of single rotationally resolved spectral lines after deconvolution of the instrument function. The observed lifetimes depend on the vibrational quantum number and are found to be strongly isotope dependent.  相似文献   

17.
High resolution infrared spectra of HeN-N2O clusters are studied in the 2200 cm(-1) region of the N2O nu1 fundamental band. The clusters are produced in a pulsed supersonic jet expansion from a cooled nozzle source and probed using a tunable diode laser operating in a rapid-scan mode. Three isotopic forms are used (14N14N16O, 15N14N16O, and 15N15N16O) in order to support the spectral analyses. For clusters up to N approximately 24, the individual spectra are resolved, assigned, and analyzed together with complementary microwave data. Assignments for larger clusters are uncertain due to overlapping transitions, but an approximate analysis is still possible for N approximately 25-80. Compared to helium clusters containing the related CO2 or OCS molecules, the rotational dynamics of HeN-N2O clusters show similarities but also important differences. In particular, HeN-N2O has more irregular behavior in the range of N=6-17, indicating that conventional molecular structure plays a greater role. In general terms, these differences can be attributed to a greater degree of angular anisotropy in the He-N2O intermolecular potential.  相似文献   

18.
The relative importance of individual microbial pathways in nitrous oxide (N(2)O) production is not well known. The intramolecular distribution of (15)N in N(2)O provides a basis for distinguishing biological pathways. Concentrated cell suspensions of Methylococcus capsulatus Bath and Nitrosomonas europaea were used to investigate the site preference of N(2)O by microbial processes during nitrification. The average site preference of N(2)O formed during hydroxylamine oxidation by M. capsulatus Bath (5.5 +/- 3.5 per thousand) and N. europaea (-2.3 +/- 1.9 per thousand) and nitrite reduction by N. europaea (-8.3 +/- 3.6 per thousand) differed significantly (ANOVA, f((2,35)) = 247.9, p = 0). These results demonstrate that the mechanisms for hydroxylamine oxidation are distinct in M. capsulatus Bath and N. europaea. The average delta(18)O-N(2)O values of N(2)O formed during hydroxylamine oxidation for M. capsulatus Bath (53.1 +/- 2.9 per thousand) and N. europaea (-23.4 +/- 7.2 per thousand) and nitrite reduction by N. europaea (4.6 +/- 1.4 per thousand) were significantly different (ANOVA, f((2,35)) = 279.98, p = 0). Although the nitrogen isotope value of the substrate, hydroxylamine, was similar in both cultures, the observed fractionation (delta(15)N) associated with N(2)O production via hydroxylamine oxidation by M. capsulatus Bath and N. europaea (-2.3 and 26.0 per thousand, respectively) provided evidence that differences in isotopic fractionation were associated with these two organisms. The site preferences in this study are the first measured values for isolated microbial processes. The differences in site preference are significant and indicate that isotopomers provide a basis for apportioning biological processes producing N(2)O.  相似文献   

19.
The Raman and infrared spectra of solid K2(12)C2O4 x H2O are reported together with, for the first time, the corresponding Raman and infrared spectra of solid K2(13)C2O4 x H2O. Raman spectra of aqueous solutions of both isotopomers are also reported. In the solid state the oxalate anion is planar with D2h symmetry in this salt, whereas in aqueous solution the Raman spectra of the anion are best interpreted on the basis of D2d symmetry. The Raman spectra of solid (NH4)2(12)C2O4 x H2O and (NH4)2(13)C2O4 x H2O, in which the oxalate anion is twisted from planarity by 28 degrees about the CC bond, have also been recorded. Several reassignments have been made. The harmonic force field for the oxalate anion in the D2h, D2 and D2d geometries has been determined in part, and approximate values of key valence force constants determined. All the observed band wavenumbers and 12C/13C isotopic shifts are well reproduced by the force fields. The potential energy distribution of the totally symmetric normal modes of planar oxalate indicates that each mode consists of extensively mixed symmetry corrdinates and that the labels previously used for the bands seen here at 475 and 879 cm(-1) would better be described as v(CC) and deltaS(CO2), respectively, putting them in the same wavenumber order as v(NN) and deltaS(NO2) for the isoelectronic and isostructural molecule N2O4. The stretching force constants of N2O4 and planar C2O4(2-) are established to be in the order f(NN) < f(CC) and f(NO) > f(CO), consistent with the known relative bond lengths.  相似文献   

20.
用三原子振动激发态的变分计算程序(TRIATOM)精确计算次氟酸分子H16OF的振动激发态的能级以及次氯酸分子中的H和O分别被D和18O取代后的H18OF,D16)OF和D18OF的同位素效应,理论计算值与已有的实验结果吻合较好。预测了一些尚未观测到的谱线频率及同位素效应,并确立了一个同位素位移的加和规则。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号