首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Response of a ground subjected to dynamic sources is a classical problem in many fields. This paper develops a transversely isotropic (TI) half-space ground model which considers the alternating distribution of different media: a TI elastic surface layer, a TI poroelastic interlayer and a TI elastic half-space from top to bottom. The model can consider soils with different properties and the existence of groundwater. Dynamic responses of the model subjected to a buried moving source are investigated. General solutions to the TI poroelastic interlayer in the wavenumber domain are derived by Fourier transform and a potential function method in a Cartesian coordinate system. The layered system with different media is solved adopting an ‘adapted stiffness matrix method’ for a buried source scenario. Dynamic responses in the time-spatial domain are obtained by inverse fast Fourier transform (iFFT) and numerical integration. The performance of the method in this study is first tested by comparison with existing research, and the influences of the existence of pore water in the interlayer, transverse isotropy, and source features are comprehensively investigated. The effect of pore water is more significant for a TI ground compared with isotropic ground, and the model in this study cannot be simplified by an ‘equivalent’ layered TI elastic model. Peak values of displacement and pore pressure exist with increasing source speed. Source speeds corresponding to them are related to the wave speeds of the medium and affected by transverse isotropy.  相似文献   

2.
The helical flow of a second grade fluid, between two infinite coaxial circular cylinders, is studied using Laplace and finite Hankel transforms. The motion of the fluid is due to the inner cylinder that, at time t = 0+ begins to rotate around its axis, and to slide along the same axis due to hyperbolic sine or cosine shear stresses. The components of the velocity field and the resulting shear stresses are presented in series form in terms of Bessel functions J0(•), Y0(•), J1(•), Y1(•), J2(•) and Y2(•). The solutions that have been obtained satisfy all imposed initial and boundary conditions and are presented as a sum of large-time and transient solutions. Furthermore, the solutions for Newtonian fluids performing the same motion are also obtained as special cases of general solutions. Finally, the solutions that have been obtained are compared and the influence of pertinent parameters on the fluid motion is discussed. A comparison between second grade and Newtonian fluids is analyzed by graphical illustrations.  相似文献   

3.
The two dimensional diffusion equation of the form is considered in this paper. We try a bi-cubic spline function of the form as its solution. The initial coefficients Ci,j(0) are computed simply by applying a collocation method; Ci,j = f(xiyj) where f(xy) = u(xy, 0) is the given initial condition. Then the coefficients Ci,j(t) are computed by X(t) = etQX(0) where X(t) = (C0,1C0,1C0,2, … , C0,NC1,0, … , CN,N) is a one dimensional array and the square matrix Q is derived from applying the Galerkin’s method to the diffusion equation. Note that this expression provides a solution that is not necessarily separable in space coordinates x, y. The results of sample calculations for a few example problems along with the calculation results of approximation errors for a problem with known analytical solution are included.  相似文献   

4.
There is an abundant literature on inequalities for the Gamma function Γ and its various related functions as well as their approximations. Only very recently, several authors began to investigate various inequalities for the double Gamma function Γ2 and its approximation. Here, in this sequel to some of these recent works, we aim at presenting an integral representation of the triple Gamma function Γ3, which is then used to derive an asymptotic formula for Γ3. As a by-product of the results presented here, integral representations and asymptotic formulas for the Gamma function Γ and the double Gamma function Γ2 are also given. The methods and techniques used in this paper can easily be extended to derive the corresponding integral representations and asymptotic formulas for the multiple Gamma functions Γn (n ≧ 4).  相似文献   

5.
Dynamic Green's function plays an important role in the study of various wave radiation, scattering and soil-structure interaction problems. However, little research has been done on the response of transversely isotropic saturated layered media. In this paper, the 3D dynamic responses of a multi-layered transversely isotropic saturated half-space subjected to concentrated forces and pore pressure are investigated. First, utilizing Fourier expansion in circumferential direction accompanied by Hankel integral transform in radial direction, the wave equations for transversely isotropic saturated medium in cylindrical coordinate system are solved. Next, with the aid of the exact dynamic stiffness matrix for in-plane and out-of-plane motions, the solutions for multi-layered transversely isotropic saturated half-space under concentrated forces and pore pressure are obtained by direct stiffness method. A FORTRAN computer code is developed to achieve numerical evaluation of the proposed method, and its accuracy is validated through comparison with existing solutions that are special cases of the more general problems addressed. In addition, selected numerical results for a homogeneous and a layered material model are performed to illustrate the effects of material anisotropy, load frequency, drainage condition and layering on the dynamic responses. The presented solutions form a complete set of Green's functions for concentrated forces (including horizontal load in x(y)-direction, vertical load in z-direction) as well as pore pressure, which lays the foundation for further exploring wave propagation of complex local site in a layered transversely isotropic saturated half-space by using the BEMs.  相似文献   

6.
7.
Let ∥ · ∥ be the Frobenius norm of matrices. We consider (I) the set SE of symmetric and generalized centro-symmetric real n × n matrices Rn with some given eigenpairs (λjqj) (j = 1, 2, … , m) and (II) the element in SE which minimizes for a given real matrix R. Necessary and sufficient conditions for SE to be nonempty are presented. A general form of elements in SE is given and an explicit expression of the minimizer is derived. Finally, a numerical example is reported.  相似文献   

8.
A new matrix based iterative method is presented to compute common symmetric solution or common symmetric least-squares solution of the pair of matrix equations AXB = E and CXD = F. By this iterative method, for any initial matrix X0, a solution X can be obtained within finite iteration steps if exact arithmetic was used, and the solution X with the minimum Frobenius norm can be obtained by choosing a special kind of initial matrix. In addition, the unique nearest common symmetric solution or common symmetric least-squares solution to given matrix in Frobenius norm can be obtained by first finding the minimum Frobenius norm common symmetric solution or common symmetric least-squares solution of the new pair of matrix equations. The given numerical examples show that the matrix based iterative method proposed in this paper has faster convergence than the iterative methods proposed in [1] and [2] to solve the same problems.  相似文献   

9.
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy (i) and (ii) below:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
We call such a pair a Leonard pair on V. Let diag(θ0θ1, … , θd) denote the diagonal matrix referred to in (ii) above and let denote the diagonal matrix referred to in (i) above. It is known that there exists a basis u0u1, … , ud for V and there exist scalars ?1?2, … , ?d in K such that Aui = θiui + ui+1 (0 ? i ? d − 1), Aud = θdud, , . The sequence ?1?2, … , ?d is called the first split sequence of the Leonard pair. It is known that there exists a basis v0v1, … , vd for V and there exist scalars ?1?2, … , ?d in K such that Avi = θdivi + vi+1 (0 ? i ? d − 1),Avd = θ0vd, , . The sequence ?1?2, … , ?d is called the second split sequence of the Leonard pair. We display some attractive formulae for the first and second split sequence that involve the trace function.  相似文献   

10.
11.
Heat and fluid flow due to non-linearly stretching surfaces   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
The paper studies the eigenvalue distribution of some special matrices. Tong in Theorem 1.2 of [Wen-ting Tong, On the distribution of eigenvalues of some matrices, Acta Math. Sinica (China), 20 (4) (1977) 273-275] gives conditions for an n × n matrix A ∈ SDn ∪ IDn to have |JR+(A)| eigenvalues with positive real part, and |JR-(A)| eigenvalues with negative real part. A counter-example is given in this paper to show that the conditions of the theorem are not true. A corrected condition is then proposed under which the conclusion of the theorem holds. Then the corrected condition is applied to establish some results about the eigenvalue distribution of the Schur complements of H-matrices with complex diagonal entries. Several conditions on the n × n matrix A and the subset α ⊆ N = {1, 2, … , n} are presented such that the Schur complement matrix A/α of the matrix A has eigenvalues with positive real part and eigenvalues with negative real part.  相似文献   

14.
Let K denote a field, and let V denote a vector space over K with finite positive dimension. By a Leonard pair on V we mean an ordered pair of linear transformations A : V → V and A : V → V that satisfy the following two conditions:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
Let (respectively v0v1, … , vd) denote a basis for V that satisfies (i) (respectively (ii)). For 0 ? i ? d, let ai denote the coefficient of , when we write as a linear combination of , and let denote the coefficient of vi, when we write Avi as a linear combination of v0v1, … , vd.In this paper we show a0 = ad if and only if . Moreover we show that for d ? 1 the following are equivalent; (i) a0 = ad and a1 = ad−1; (ii) and ; (iii) ai = adi and for 0 ? i ? d. These give a proof of a conjecture by the second author. We say A, A is balanced whenever ai = adi and for 0 ? i ? d. We say A,A is essentially bipartite (respectively essentially dual bipartite) whenever ai (respectively ) is independent of i for 0 ? i ? d. Observe that if A, A is essentially bipartite or dual bipartite, then A, A is balanced. For d ≠ 2, we show that if A, A is balanced then A, A is essentially bipartite or dual bipartite.  相似文献   

15.
16.
17.
An alternative method is presented for solving the eigenvalue problem that governs the stability of Taylor–Couette and Dean flow. The eigenvalue problems defined by the two-point boundary value problems are converted into initial value problems by applying unit disturbance method developed by Harris and Reid [27] in 1964. Thereafter, the initial value problems are solved by differential transform method in series and the eigenvalues are computed by shooting technique. Critical wave number and Taylor number for Taylor–Couette flow are computed for a wide range of rotation ratio (μ), −4 ? μ ? 1 (first mode) and −2 ? μ ? 1 (second mode). The radial eigenfunction and cell patterns are presented for μ = −1, 0, 1. Also, we have computed critical wave number and Dean number successfully.  相似文献   

18.
19.
Until now the concept of a Soules basis matrix of sign patternN consisted of an orthogonal matrix RRn,n, generated in a certain way from a positive n-vector, which has the property that for any diagonal matrix Λ = diag(λ1, … , λn), with λ1 ? ? ? λn ? 0, the symmetric matrix A = RΛRT has nonnegative entries only. In the present paper we introduce the notion of a pair of double Soules basis matrices of sign patternN which is a pair of matrices (PQ), each in Rn,n, which are not necessarily orthogonal and which are generated in a certain way from two positive vectors, but such that PQT = I and such that for any of the aforementioned diagonal matrices Λ, the matrix A = PΛQT (also) has nonnegative entries only. We investigate the interesting properties which such matrices A have.As a preamble to the above investigation we show that the iterates, , generated in the course of the QR-algorithm when it is applied to A = RΛRT, where R is a Soules basis matrix of sign pattern N, are again symmetric matrices generated by the Soules basis matrices Rk of sign pattern N which are themselves modified as the algorithm progresses.Our work here extends earlier works by Soules and Elsner et al.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号