首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exact solutions corresponding to the unsteady helical flow of an Oldroyd-B fluid due to an infinite circular cylinder subject to torsional and longitudinal time-dependent shear stresses are established using Hankel transforms. These solutions, presented under series form in terms of Bessel functions J 0(·), J 1(·) and J 2(·), can be easily specialized to give the similar solutions for Maxwell, Second grade and Newtonian fluids performing the same motion. Some characteristics of the motion, as well as the influence of pertinent parameters on the velocity profiles, are underlined by graphical illustrations.  相似文献   

2.
Exact solutions corresponding to the unsteady helical flow of an Oldroyd-B fluid due to an infinite circular cylinder subject to torsional and longitudinal time-dependent shear stresses are established using Hankel transforms. These solutions, presented under series form in terms of Bessel functions J 0(·), J 1(·) and J 2(·), can be easily specialized to give the similar solutions for Maxwell, Second grade and Newtonian fluids performing the same motion. Some characteristics of the motion, as well as the influence of pertinent parameters on the velocity profiles, are underlined by graphical illustrations.  相似文献   

3.
The helical flows of second grade fluid between two infinite coaxial circular cylinders is considered. The motion is produced by the inner cylinder that at the initial moment applies torsional and longitudinal constantly accelerated shear stresses to the fluid. The exact analytic solutions, obtained by employing the Laplace and finite Hankel transforms and presented in series form in term of usual Bessel functions of first and second kind, satisfy both the governing equations and all imposed initial and boundary conditions. In the limiting case when α  0, the solutions for Newtonian fluid are obtained for the same motion. The large-time solutions and transient solutions for second grade fluid are also obtained, and effect of material parameter α and kinematic viscosity ν is discussed. In the last, the effects of various parameters of interest on fluid motion as well as the comparison between second grade and Newtonian fluids are analyzed by graphical illustrations.  相似文献   

4.
The unsteady helical flow of an Oldroyd-B fluid, in an infinite circular cylinder, is studied by using finite Hankel transforms. The motion is produced by the cylinder that, at time t = 0+, is subject to torsional and longitudinal time-dependent shear stresses. The solutions that have been obtained, presented under series form, satisfy all imposed initial and boundary conditions. The corresponding solutions for Maxwell, second grade and Newtonian fluids are obtained as limiting cases of general solutions. Finally, the influence of the pertinent parameters on the fluid motion is underlined by graphical illustrations.  相似文献   

5.
Unsteady flow of an incompressible generalized Maxwell fluid between two coaxial circular cylinders is studied by means of the Laplace and finite Hankel transforms. The motion of the fluid is produced by the rotation of cylinders around their common axis. The solutions that have been obtained, written in integral and series form in terms of the generalized Ga,b,c(·, t)-functions, are presented as a sum of the Newtonian solutions and the corresponding non-Newtonian contributions. They satisfy all imposed initial and boundary conditions and for λ  0 reduce to the solutions corresponding to the Newtonian fluids performing the same solution. Furthermore, the corresponding solutions for ordinary Maxwell fluids are also obtained for β = 1. Finally, in order to reveal some relevant physical aspects of the obtained results, the diagrams of the velocity field ω(r, t) have been depicted against r and t for different values of the material and fractional parameters.  相似文献   

6.
The velocity field and the associated shear stresses corresponding to the unsteady flow of generalized Maxwell fluid on oscillating rectangular duct have been determined by means of double finite Fourier sine and Laplace transforms. These solutions are also presented as a sum of the steady-state and transient solutions. The solutions corresponding to Maxwell fluids, performing the same motion, appear as limiting cases of the solutions obtained here. In the absence of w, namely the frequency, and making α → 1, all solutions that have been determined reduce to those corresponding to the Rayleigh Stokes problem on oscillating rectangular duct for Maxwell fluids. Finally, some graphical representations confirm the above assertions.  相似文献   

7.
Considering a fractional derivative model the unsteady flow of an Oldroyd-B fluid between two infinite coaxial circular cylinders is studied by using finite Hankel and Laplace transforms. The motion is produced by the inner cylinder which is subject to a time dependent longitudinal shear stress at time t = 0+. The solution obtained under series form in terms of generalized G and R functions, satisfy all imposed initial and boundary conditions. The corresponding solutions for ordinary Oldroyd-B, generalized and ordinary Maxwell, and Newtonian fluids are obtained as limiting cases of our general solutions. The influence of pertinent parameters on the fluid motion as well as a comparison between models is illustrated graphically.  相似文献   

8.
The steady two-dimensional laminar boundary layer flow of a power-law fluid past a permeable stretching wedge beneath a variable free stream is studied in this paper. Using appropriate similarity variables, the governing equations are reduced to a single third order highly nonlinear ordinary differential equation in the dimensionless stream function, which is solved numerically using the Runge-Kutta scheme coupled with a conventional shooting procedure. The flow is governed by the wedge velocity parameter λ, the transpiration parameter f0, the fluid power-law index n, and the computed wall shear stress is f″(0). It is found that dual solutions exist for each value of f0, m and n considered in λ − f″(0) parameter space. A stability analysis for this self-similar flow reveals that for each value of f0, m and n, lower solution branches are unstable while upper solution branches are stable. Very good agreements are found between the results of the present paper and that of Weidman et al. [28] for n = 1 (Newtonian fluid) and m = 0 (Blasius problem [31]).  相似文献   

9.
This paper initiates the investigation of nonlinear integral equations with Erdélyi-Kober fractional operator. Existence and uniqueness results of solutions in a closed ball are obtained by using a directly computational method and Schauder fixed point theorem via a weakly singular integral inequality due to Ma and Pec?ari? [20]. Meanwhile, three certain solutions sets YK,σ, Y1,λ and Y1,1, which tending to zero at an appropriate rate tν, 0 < ν = σ (or λ or 1) as t → +∞, are constructed and local stability results of solutions are obtained based on these sets respectively under some suitable conditions. Two examples are given to illustrate the results.  相似文献   

10.
This paper deals with the numerical solution of laminar viscous incompressible flows for generalized Newtonian fluids in the branching channel. The generalized Newtonian fluids contain Newtonian fluids, shear thickening and shear thinning non-Newtonian fluids. The mathematical model is the generalized system of Navier-Stokes equations. The finite volume method combined with an artificial compressibility method is used for spatial discretization. For time discretization the explicit multistage Runge-Kutta numerical scheme is considered. Steady state solution is achieved for t → ∞ using steady boundary conditions and followed by steady residual behavior. For unsteady solution a dual-time stepping method is considered. Numerical results for flows in two dimensional and three dimensional branching channel are presented.  相似文献   

11.
The velocity field and the adequate shear stress corresponding to the flow of a Maxwell fluid with fractional derivative model, between two infinite coaxial cylinders, are determined by means of the Laplace and finite Hankel transforms. The motion is due to the inner cylinder that applies a longitudinal time dependent shear to the fluid. The solutions that have been obtained, presented under integral and series form in terms of the generalized G and R functions, satisfy all imposed initial and boundary conditions. They can be easy particularizes to give the similar solutions for ordinary Maxwell and Newtonian fluids. Finally, the influence of the relaxation time and the fractional parameter, as well as a comparison between models, is shown by graphical illustrations.  相似文献   

12.
The velocity field and the shear stresses corresponding to the motion of a second grade fluid between two side walls, induced by an infinite plate that applies an accelerated shear stress to the fluid, are determined by means of the integral transforms. The obtained solutions, presented under integral form in term of the solutions corresponding to the flow due to a constant shear on the boundary, satisfy all imposed initial and boundary conditions. In the absence of the side walls, they reduce to the similar solutions over an infinite plate. The Newtonian solutions are obtained as limiting cases of the general solutions. The influence of the side walls on the fluid motion as well as a comparison between the two models is shown by graphical illustrations.  相似文献   

13.
The velocity field and the shear stresses corresponding to the motion of a second grade fluid between two side walls, induced by an infinite plate that applies an accelerated shear stress to the fluid, are determined by means of the integral transforms. The obtained solutions, presented under integral form in term of the solutions corresponding to the flow due to a constant shear on the boundary, satisfy all imposed initial and boundary conditions. In the absence of the side walls, they reduce to the similar solutions over an infinite plate. The Newtonian solutions are obtained as limiting cases of the general solutions. The influence of the side walls on the fluid motion as well as a comparison between the two models is shown by graphical illustrations.  相似文献   

14.
In this paper, we explore the distributive equations of implications, both independently and along with other equations. In detail, we consider three classes of equations. (1) By means of the section of I, we give out the sufficient and necessary conditions of solutions for the distributive equation of implication I(xT(yz)) = T(I(xy), (xz)) based on a nilpotent triangular norm T and an unknown function I, which indicates that there are no continuous solutions satisfying the boundary conditions of implications. Under the assumptions that I is continuous except the vertical section I(0, y), y ∈ [0, 1), we get its complete characterizations. (2) We prove that there are no solutions for the functional equations I(xT(yz)) = T(I(xy), I(xz)), I(xI(yz)) = I(T(xy), z). (3) We obtain the sufficient and necessary conditions on T and I to be solutions of the functional equations I(xT(yz)) = T(I(xy), I(xz)), I(xy) = I(N(y), N(x)).  相似文献   

15.
Let jvk, yvk and cvk denote the kth positive zeros of the Bessel functions Jv(x), Yv(x) and of the general cylinder function Cv(x) = cos αJv(x)?sin αYv(x), 0 ? α < π, respectively. In this paper we extend to cvk, k = 2, 3,..., some linear inequalities presently known only for jvk. In the case of the zeros yvk we are able to extend these inequalities also to k = 1. Finally in the case of the first positive zero jv1 we compare the linear enequalities given in [9] with some other known inequalities.  相似文献   

16.
This paper deals with ut = Δu + um(xt)epv(0,t), vt = Δv + uq(0, t)env(x,t), subject to homogeneous Dirichlet boundary conditions. The complete classification on non-simultaneous and simultaneous blow-up is obtained by four sufficient and necessary conditions. It is interesting that, in some exponent region, large initial data u0(v0) leads to the blow-up of u(v), and in some betweenness, simultaneous blow-up occurs. For all of the nonnegative exponents, we find that u(v) blows up only at a single point if m > 1(n > 0), while u(v) blows up everywhere for 0 ? m ? 1 (n = 0). Moreover, blow-up rates are considered for both non-simultaneous and simultaneous blow-up solutions.  相似文献   

17.
Special exact solutions of the K(2, 2) equation, ut + (u2)x + (u2)xxx = 0, are investigated by employing the qualitative theory of differential equations. Our procedure shows that the K(2, 2) equation either has loop soliton, cusped soliton and smooth soliton solutions when sitting on the non-zero constant pedestal limx→±∞u = A ≠ 0, or possesses compacton solutions only when limx→±∞u = 0. Mathematical analysis and numerical simulations are provided for these soliton solutions of the K(2, 2) equation.  相似文献   

18.
Let η be a regular cardinal. It is proved, among other things, that: (i) if J(η) is the corresponding long James space, then every closed subspace YJ(η), with Dens (Y) = η, has a copy of 𝓁2(η) complemented in J(η); (ii) if Y is a closed subspace of the space of continuous functions C([1, η]), with Dens (Y) = η, then Y has a copy of c0(η) complemented in C([1, η]). In particular, every nonseparable closed subspace of J1) (resp. C([1, ω1])) contains a complemented copy of 𝓁21) (resp.c01)). As consequence, we give examples (J1), C([1, ω1]), C(V), V being the “long segment”) of Banach spaces X with the hereditary density property (HDP) (i.e., for every subspace YX we have that Dens (Y) = w*–Dens (Y*)), in spite of these spaces are not weakly Lindelof determined (WLD).  相似文献   

19.
In this paper we study perturbations of a large class of subordinate Brownian motions in bounded κ-fat open sets, which include bounded John domains. Suppose that X is such a subordinate Brownian motion and that J is the Lévy density of X. The main result of this paper implies, in particular, that if Y is a symmetric Lévy process with Lévy density J Y satisfying |J Y (x)???J(x)|?≤?c max {|x|???d?+?ρ , 1} for some c?>?0,ρ?∈?(0, d), then for any bounded John domain D the Green function $G^Y_D$ of Y in D is comparable to the Green function G D of X in D. One of the main tools of this paper is the drift transform introduced in Chen and Song (J Funct Anal 201:262–281, 2003). To apply the drift transform, we first establish a generalized 3G theorem for X.  相似文献   

20.
In this paper, existence and attractiveness of solutions for quadratic Urysohn fractional integral equations on an unbounded interval are obtained by virtue of Tichonov fixed point theorem and suitable conjunction of the well known measure ω0(X) and the spaces C(R+). Further, three certain solutions sets XL,γ, X1,α and X1,(1−(α+v)), which tending to zero at an appropriate rate tν (ν > 0), ν = γ (or α or 1 − (α + v)) as t → ∞, are introduced and stability of solutions for quadratic Urysohn fractional integral equations are obtained based on these solutions sets respectively by applying Schauder fixed point theorem via some easy checked conditions. An example is given to illustrate the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号