首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The lightest supersymmetric particle (LSP) is a natural candidate for the cold dark matter of the universe. In this Letter we discuss how to test the mechanism responsible for the LSP stability at the LHC. We note that if R-parity is conserved dynamically one should expect a Higgs boson which decays mainly into two right-handed neutrinos (a “leptonic” Higgs) or into two sfermions. The first case could exhibit spectacular lepton number violating signals with four secondary vertices due to the long-lived nature of right-handed neutrinos. These signals, together with the standard channels for the discovery of SUSY, could help to establish the underlying theory at the TeV scale.  相似文献   

2.
Michael Dittmar 《Pramana》2000,55(1-2):151-160
The latest unsuccessful Higgs searches at LEP have pushed its mass well into the domain where significant signals can be expected from the LHC experiments. The most sensitive LHC Higgs signatures are reviewed and the discovery year is estimated as a function of the Higgs mass. Finally, we give some ideas about: ‘What might be known about the production and decays of a SM Higgs boson’ after 10 years of LHC?  相似文献   

3.
We summarize the possible processes which may be used to search for a Higgs boson, of mass in the range 114-130 GeV, at the LHC. We discuss, in detail, two processes with rapidity gaps: exclusive Higgs production with tagged outgoing protons and production by Weak Boson Fusion, in each case taking as the signal. We make an extensive study of all possible backgrounds, and discuss the relevant experimental issues. We emphasize the special features of these signals, and of their background processes, and show that they could play an important role in identifying a light Higgs boson at the LHC. Received: 5 July 2002 / Published online: 30 August 2002  相似文献   

4.
The experiments at the large hadron collider (LHC) will probe for Higgs boson in the mass range between the lower bound on the Higgs mass set by the experiments at the large electron positron collider (LEP) and the unitarity bound (∼1 TeV). Strategies are being developed to look for signatures of Higgs boson and measure its properties. In this paper results from full detector simulation-based studies on Higgs discovery from both ATLAS and CMS experiments at the LHC will be presented. Results of simulation studies on Higgs coupling measurement at LHC will be discussed. on behalf of the CMS and the ATLAS Collaborations  相似文献   

5.
We evaluate two-body decay modes of charginos in the Minimal Supersymmetric Standard Model with complex parameters (cMSSM). Assuming heavy scalar quarks we take into account all decay channels involving charginos, neutralinos, (scalar) leptons, Higgs bosons and Standard Model gauge bosons. The evaluation of the decay widths is based on a full one-loop calculation including hard and soft QED radiation. Special attention is paid to decays involving the Lightest Supersymmetric Particle (LSP), i.e. the lightest neutralino, or a neutral or charged Higgs boson. The higher-order corrections of the chargino decay widths involving the LSP can easily reach a level of about ±10%, while the corrections to the decays to Higgs bosons are slightly smaller, translating into corrections of similar size in the respective branching ratios. These corrections are important for the correct interpretation of LSP and Higgs production at the LHC and at a future linear e + e collider. The results will be implemented into the Fortran code FeynHiggs.  相似文献   

6.
The predictions for the mass of the light CP-even Higgs are investigated in the context of a simple extension of the Minimal Supersymmetric Standard Model where the baryon and lepton numbers are local gauge symmetries. This theory predicts the existence of light charged and neutral leptons which give extra contributions to the Higgs mass at the one-loop level. We show the possibility to satisfy the LEP2 bound and achieve a Higgs mass around 125 GeV in a supersymmetric spectrum with light sfermions and small left–right mixing in the stop sector. We make a brief discussion of the unique leptonic signals at the Large Hadron Collider. This theory predicts baryon number violation at the low scale and one could avoid the current LHC bounds on the supersymmetric mass spectrum.  相似文献   

7.
Motivated by the LHC results revealing the SM scalar sector as well as by its possible revision, we consider an MSSM scalar extension consisting of two Higgs triplets generating the observed neutrino and Higgs masses. The latter constrains their suppressed vevs and sizable couplings, which slightly influence the extended neutralino sector and the LSP emergence.  相似文献   

8.
The NMSSM contains a Higgs singlet in addition to the two Higgs doublets typical of the MSSM, thus resulting in a total of seven physical Higgs mass states. Therefore, the phenomenology of the NMSSM Higgs sector can differ considerably from that of the MSSM, and there are good prospects of finding in regions of the NMSSM parameter space Higgs signals that cannot be reproduced in the MSSM. We examined here the two-photon decay mode of a Higgs boson and found that up to three neutral Higgs states, heavy and/or light, could be simultaneously observable at the LHC, a possibility precluded to the MSSM. There are also some possibilities that only the lightest NMSSM Higgs boson be detectable via this mode, with a mass beyond the upper limit of the corresponding MSSM state, thus also allowing one to distinguish between the two scenarios. However, in most of the NMSSM parameter space the configurations of the non-minimal model are not very different from those arising in the minimal case.  相似文献   

9.
The last 2 years has seen an immense amount of activity and results from the Large Hadron Collider (LHC). Most notable is the discovery of a new particle which may very well be the long sought Higgs boson associated with electroweak symmetry breaking. There have also been many (up to now) unsuccessful searches for new particles associated with supersymmetry. One of the most attractive candidates for dark matter is the lightest supersymmetric particle (LSP). The recent results from the LHC have had a dramatic impact on our expectations for the properties of the LSP. These results can be used to revise expectations for both direct and indirect detection of dark matter.  相似文献   

10.
Following the discovery of the Higgs boson with a mass of approximately 125 Ge V at the LHC, many studies have been performed from both the theoretical and experimental viewpoints to search for a new Higgs Boson that is lighter than 125 Ge V. We explore the possibility of constraining a lighter neutral scalar Higgs boson h_1 and a lighter pseudo-scalar Higgs boson a_1 in the Next-to-Minimal Supersymmetric Standard Model by restricting the next-to-lightest scalar Higgs boson h_2 to be the one observed at the LHC after applying the phenomenological constraints and those from experimental measurements. Such lighter particles are not yet completely excluded by the latest results of the search for a lighter Higgs boson in the diphoton decay channel from LHC data. Our results show that some new constraints on the Next-to-Minimal Supersymmetric Standard Model could be obtained for a lighter scalar Higgs boson at the LHC if such a search is performed by experimental collaborations and more data. The potentials of discovery for other interesting decay channels of such a lighter neutral scalar or pseudo-scalar particle are also discussed.  相似文献   

11.
Inclusive standard model Higgs boson pair production and subsequent decay to same-sign dileptons via weak gauge W+/- bosons at the CERN Large Hadron Collider (LHC) has the capability to determine the Higgs boson self-coupling, lambda. The large top quark mass limit is found not to be a good approximation for the signal if one wishes to utilize differential distributions in the analysis. We find that it should be possible at the LHC with design luminosity to establish that the standard model Higgs boson has a nonzero self-coupling and that lambda/lambda(SM) can be restricted to a range of 0-3.7 at 95% confidence level if its mass is between 150 and 200 GeV.  相似文献   

12.
The impact of the fourth Standard Model family on Higgs boson search at Tevatron and LHC is reviewed. The enhancement due to a fourth SM family in the production of Higgs boson via gluon fusion already enables the Tevatron experiments to become sensitive to Higgs masses between 140 and 200 GeV and could increase this sensitivity up to about 300 GeV until the LHC is in shape. The same effect could enable the LHC running even at 7 TeV center of mass energy to scan Higgs masses between 200 and 300 GeV only with a few hundred pb?1 of integrated luminosity.  相似文献   

13.
The LHC is putting bounds on the Higgs boson mass. In this Letter we use those bounds to constrain the minimal supersymmetric standard model (MSSM) parameter space using the fact that, in supersymmetry, the Higgs mass is a function of the masses of sparticles, and therefore an upper bound on the Higgs mass translates into an upper bound for the masses for superpartners. We show that, although current bounds do not constrain the MSSM parameter space from above, once the Higgs mass bound improves big regions of this parameter space will be excluded, putting upper bounds on supersymmetry (SUSY) masses. On the other hand, for the case of split-SUSY we show that, for moderate or large tanβ, the present bounds on the Higgs mass imply that the common mass for scalars cannot be greater than 10(11) GeV. We show how these bounds will evolve as LHC continues to improve the limits on the Higgs mass.  相似文献   

14.
安芬芬  白羽  陈春晖  陈新  陈振兴  Joao Guimaraes da Costa  崔振崴  方亚泉  付成栋  高俊  高艳彦  高原宁  葛韶锋  顾嘉荫  郭方毅  郭军  韩涛  韩爽  何红建  何显柯  何小刚  胡继峰  徐士杰  金山  荆茂强  Susmita Jyotishmati  Ryuta Kiuchi  郭家铭  赖培筑  李博扬  李聪乔  李刚  李海峰  李亮  李数  李通  李强  梁浩  梁志均  廖立波  刘波  刘建北  刘涛  刘真  娄辛丑  马连良  Bruce Mellado  莫欣  Mila Pandurovic  钱剑明  钱卓妮  Nikolaos Rompotis  阮曼奇  Alex Schuy  单连友  史静远  史欣  苏淑芳  王大勇  王锦  王连涛  王贻芳  魏彧骞  许悦  杨海军  杨迎  姚为民  于丹  张凯栗  张照茹  赵明锐  赵祥虎  周宁 《中国物理C(英文版)》2019,(4)
The discovery of the Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations marked the beginning of a new era in high energy physics.The Higgs boson will be the subject of extensive studies of the ongoing LHC program.At the same time,lepton collider based Higgs factories have been proposed as a possible next step beyond the LHC,with its main goal to precisely measure the properties of the Higgs boson and probe potential new physics associated with the Higgs boson.The Circular Electron Positron Collider(CEPC)is one of such proposed Higgs factories.The CEPC is an e~+e~- circular collider proposed by and to be hosted in China.Located in a tunnel of approximately 100 km in circumference,it will operate at a center-of-mass energy of 240 GeV as the Higgs factory.In this paper,we present the first estimates on the precision of the Higgs boson property measurements achievable at the CEPC and discuss implications of these measurements.  相似文献   

15.
The search for the Higgs boson was one of the most relevant issues of the final years of LEP running at high energies. An excess of 3σ beyond the background expectation has been found, consistent with the production of the Higgs boson with a mass near 115 GeV/c2. At the upgraded TeVatron and at LHC the search for the Higgs boson will continue. At TeVatron Higgs bosons can be detected with masses up to 180 GeV with an assumed total integrated luminosity of 20 fb—1. LHC has the potential to discover the Higgs boson in many different decay channels for Higgs masses up to 1 TeV. It will be possible to measure Higgs boson parameters, such as mass, width, and couplings to fermions and bosons. The results from Higgs searches at LEP2 and the possibilities for searches at hadron colliders will be reviewed.  相似文献   

16.
We calculate the Yukawa corrections of order to charged Higgs boson production in association with a top quark at the Tevatron and the LHC. The corrections are not very sensitive to the mass of the charged Higgs boson and can exceed for low values of , where the contribution of the top quark is large, and high values of where the contribution of the bottom quark becomes large. These Yukawa corrections could be significant for charged Higgs boson searches based on this production process, particularly at the LHC where the cross section is relatively large. Received: 12 October 1999 / Revised version: 3 December 1999 / Published online: 6 April 2000  相似文献   

17.
We suggest that the Higgs could be discovered at the Tevatron or the LHC (perhaps at the LHCb detector) through decays with one or more substantially displaced vertices from the decay of new neutral particles. This signal may occur with a small but measurable branching fraction in the recently-described “hidden valley” models, hep-ph/0604261; weakly-coupled models with multiple scalars, including those of hep-ph/0511250, can also provide such signals, potentially with a much larger branching fraction. This decay channel may extend the Higgs mass reach for the Tevatron. Unusual combinations of b jets, lepton pairs and/or missing energy may accompany this signal.  相似文献   

18.
HiggsSignals is a Fortran90 computer code that allows to test the compatibility of Higgs sector predictions against Higgs rates and masses measured at the LHC or the Tevatron. Arbitrary models with any number of Higgs bosons can be investigated using a model-independent input scheme based on HiggsBounds. The test is based on the calculation of a $\chi ^2$ measure from the predictions and the measured Higgs rates and masses, with the ability of fully taking into account systematics and correlations for the signal rate predictions, luminosity and Higgs mass predictions. It features two complementary methods for the test. First, the peak-centered method, in which each observable is defined by a Higgs signal rate measured at a specific hypothetical Higgs mass, corresponding to a tentative Higgs signal. Second, the mass-centered method, where the test is evaluated by comparing the signal rate measurement to the theory prediction at the Higgs mass predicted by the model. The program allows for the simultaneous use of both methods, which is useful in testing models with multiple Higgs bosons. The code automatically combines the signal rates of multiple Higgs bosons if their signals cannot be resolved by the experimental analysis. We compare results obtained with HiggsSignals to official ATLAS and CMS results for various examples of Higgs property determinations and find very good agreement. A few examples of HiggsSignals applications are provided, going beyond the scenarios investigated by the LHC collaborations. For models with more than one Higgs boson we recommend to use HiggsSignals and HiggsBounds in parallel to exploit the full constraining power of Higgs search exclusion limits and the measurements of the signal seen at $m_H\approx 125.5$  GeV.  相似文献   

19.
At the CERN large hadron collider (LHC), production of the Higgs boson in association with Z or W bosons provides a dramatic experimental signal for detecting the standard model (SM) Higgs boson. In this paper, we consider the contributions of the left-right twin Higgs (LRTH) model to the processes q\bar{q}→Z(W)H. Our numerical results show that, in the favorable parameter spaces, the cross sections deviate distinctly from the predictions
of the SM. The possible signals of the LRTH model can be detected via these processes at the LHC experiments.  相似文献   

20.
Anindya Datta 《Pramana》2003,60(2):363-368
We propose a novel method for the search of supersymmetry, especially for the electroweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to find the signals of EW gauginos in supersymmetric theories where the canonical search strategies for these particles fail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号