首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了探测更高轨道的空间目标,研制了一台通光口径为φ750 mm的望远镜.该望远镜为主焦点光学系统,由一片二次非球面反射元件和四片透射元件组成,具有大视场(4°),大相对孔径(1∶1.32)和宽光谱(500~800 nm)的特点.本文以该望远镜的研制为基础,介绍了其光学系统各个元件的单独检测和系统装调完成后的整体检测方法和过程.采用样板法对系统中的球面透射元件进行了单独检测,采用透射无像差补偿器法对二次非球面反射镜进行了单独检测,采用反射无像差补偿器法对组合起来的透射校正镜组进行了检测,并且对系统装调对准之后的光学系统进行室内平行光管和室外对星观测两种方法进行检测,测量结果均满足设计要求,其中球面透镜的面形误差小于0.1个光圈,反射元件和透射元件非球面表面的面形误差均优于λ/30(λ=632.8 nm),透射校正镜组的波像差优于λ/30(λ=632.8nm).光学系统整体检测结果表明,室内和室外检测结果一致,其像面的80%能量集中度直径在4°的全视场范围内均小于2个像元,达到了设计的成像要求.  相似文献   

2.
为了探测更高轨道的空间目标,研制了一台通光口径为Ф750 mm的望远镜.该望远镜为主焦点光学系统,由一片二次非球面反射元件和四片透射元件组成,具有大视场(4°),大相对孔径(1∶1.32)和宽光谱(500~800 nm)的特点.本文以该望远镜的研制为基础,介绍了其光学系统各个元件的单独检测和系统装调完成后的整体检测方法和过程.采用样板法对系统中的球面透射元件进行了单独检测,采用透射无像差补偿器法对二次非球面反射镜进行了单独检测,采用反射无像差补偿器法对组合起来的透射校正镜组进行了检测,并且对系统装调对准之后的光学系统进行室内平行光管和室外对星观测两种方法进行检测.测量结果均满足设计要求,其中球面透镜的面形误差小于0.1个光圈,反射元件和透射元件非球面表面的面形误差均优于λ/30(λ=632.8 nm),透射校正镜组的波像差优于λ/30(λ=632.8nm).光学系统整体检测结果表明,室内和室外检测结果一致,其像面的80% 能量集中度直径在4°的全视场范围内均小于2个像元,达到了设计的成像要求.  相似文献   

3.
将光学系统波像差检验技术与子孔径拼接测试技术相融合提出了凸非球面系统拼接检测方法,对该方法的原理和实现步骤进行了分析和研究,并建立了合理的子孔径拼接数学模型.依次利用计算机控制光学表面成形技术和磁流变抛光技术对一包含大口径凸非球面的离轴三反光学系统的各反射镜进行加工,并对整个系统进行装调和测试.测定光学系统各视场的波像差分布,通过综合优化子孔径拼接算法和全口径面形数据插值求解得到大口径凸非球面全口径的面形信息.结合工程实例,对一口径为292mm×183 mm的离轴非球面次镜进行了系统拼接测试和加工,其最终面形分布的均方根值为0.017λ(λ=632.8 nm).  相似文献   

4.
将光学系统波像差检验技术与子孔径拼接测试技术相融合提出了凸非球面系统拼接检测方法,对该方法的原理和实现步骤进行了分析和研究,并建立了合理的子孔径拼接数学模型.依次利用计算机控制光学表面成形技术和磁流变抛光技术对一包含大口径凸非球面的离轴三反光学系统的各反射镜进行加工,并对整个系统进行装调和测试.测定光学系统各视场的波像差分布,通过综合优化子孔径拼接算法和全口径面形数据插值求解得到大口径凸非球面全口径的面形信息.结合工程实例,对一口径为292mm×183 mm的离轴非球面次镜进行了系统拼接测试和加工,其最终面形分布的均方根值为0.017λ(λ=632.8nm).  相似文献   

5.
王孝坤 《中国光学》2016,9(1):130-136
针对大口径离轴凸非球面面形检测的困难,本文将光学系统波像差检验技术与子孔径拼接干涉技术相结合,提出了凸非球面系统拼接检测方法。对该方法的基本原理和具体实现过程进行了分析和研究,并建立了合理的子孔径拼接数学模型。当离轴三反光学系统的主镜和三镜加工完成以后,对整个系统进行装调和测试,并依次测定光学系统各视场的波像差分布,通过综合优化子孔径拼接算法和全口径面形数据插值可以求解得到大口径非球面全口径的面形信息,从而为非球面后续加工和系统的装调提供了依据和保障。结合工程实例,对一口径为287 mm×115 mm的离轴非球面次镜进行了系统拼接测试和加工,经过两个周期的加工和测试,其面形分布的RMS值接近1/30λ(λ=632.8 nm)。  相似文献   

6.
明名  吕天宇  吴小霞 《光子学报》2014,43(6):622003
介绍了一台口径为1.23m光电望远镜的Coude光学系统,通过比较国内外地基大口径望远镜Coude光学系统的形式,结合实际情况,设计了以离轴非球面反射镜作为二次成像元件的Coude光学系统,并给出了相应的检测和装调的方法.经实际检测和装调对准后,对Coude光学系统的设计、检测和装调对准过程中的误差进行了分析和比较,证明了检测与装调方法的可靠性和先进性.该Coude光学系统的焦距为125m,视场为1.5′,波段为0.4~5μm,系统波像差优于λ/50(λ=0.632 8μm),实验室内检测波像差为λ/20.装调对准完成后对恒星观测,用Shack-Hartmann波前探测器测量其波前误差,得到整个望远镜Coude光学系统的波像差优于λ/4.  相似文献   

7.
离轴非球面反射镜补偿检验的计算机辅助装调技术研究   总被引:2,自引:1,他引:1  
利用零补偿器实施离轴非球面元件面形的干涉检测中,为了实现反射镜的高准确度检测,对其干涉结果中的误差信息进行了分析.根据零补偿器的补偿原理,提出一种新的调整误差分离方法,建立了离轴非球面补偿检验的调整误差分离模型,并利用该模型对一块离轴非球面反射镜进行了仿真实验.调整前由调整误差引入的波像差为0.2332λRMS(λ=632.8nm),根据仿真结果调整后的波像差为0.0026λRMS,表明该方法具有较高的准确度,可有效提高检测效率.  相似文献   

8.
重点分析了非球面元件磁流变加工的动态稳定性影响因素。设计了非球面元件的自动装调定位系统,提高了装调精度。采用一种拟合光栅式加工的新方法来验证其效果,通过测量元件表面形成的直线沟壑深度、宽度波动比例来评价去除的动态稳定性。在400 mm×400 mm口径的方形非球面元件上进行面形收敛验证实验,波长λ为632.8 nm时,加工后的透射波前误差PV值达到0.331λ,低频透射波前梯度误差GRMS值达到了0.008λ/cm。  相似文献   

9.
为实现高次非球面的高精度检测与确定性加工,从高次非球面检测的零位补偿器设计和干涉检测图的投影畸变校正两方面出发提出了具体的解决方案。首先,基于三级像差理论与PW法推导了高次非球面三片式补偿器初始结构参数计算公式。针对有效口径314 mm、F/0.78的8阶偶次非球面,将基于公式获得的初始结构参数代入光学设计软件进行缩放、优化后获得PV=0.009 6λ、RMS=0.001 2λ(λ=632.8 nm)的补偿器设计结果,公差分析结果表明此设计满足高次非球面λ/50的检测精度要求。进一步地,针对基于零位补偿器的干涉检测图存在畸变的问题提出了一种校正方法,该方法采用零位补偿器的成像畸曲线数据确定干涉图的畸变规律,利用畸变零点求解算法确定畸变中心,结合畸变规律与畸变中心点坐标进行逆向求解实现干涉检测图畸变的快速校正。采用本文所提方法对零位补偿检测结果进行畸变校正,基于畸变校正结果对非球面进行了6次磁流变抛光后,面形RMS由0.270λ收敛至0.019λ,验证了该畸变校正方法的有效性。  相似文献   

10.
根据高分辨物镜各个光学元件的实测数据,应用轴向补偿和旋转补偿法,在仿真精密装调过程中得到了物镜轴向补偿器的最优值和各元件的最佳旋转角度。仿真结果表明,在97.7%的置信区间内,物镜各视场波像差RMS值从补偿前的0.087λ(λ=632.8nm)减小到了补偿后的0.040λ。依据获得的参数对物镜进行了装调实验,结果表明,激光干涉仪测得的物镜各视场波像差RMS值介于0.050~0.082λ之间,基本达到了衍射极限的分辨率要求,验证了像质补偿方法的有效性。  相似文献   

11.
《光学技术》2013,(3):212-216
大口径凸非球面检验是非球面镜制造领域的难题之一。结合项目中一块相对孔径F/0.75,口径为332mm凸抛物面副镜的研制实例,在分析传统检验方法优缺点及适用性后,针对性地提出了一种类Offner透射补偿检验的新方法。基于三级像差理论出发求解其初始结构,使用Zemax软件分析与优化,从设计结果上看,此方法补偿精度很高,有效地补偿了非球面的法线像差。用蒙特卡洛方法分析给出公差分配方案,并研制出类Offner透射补偿器,用于凸抛物面镜的面型检验,表明此检验方法是完全可行的。实际加工完成后,用4D干涉仪检测镜面的面形精度达到RMS=0.0183λ优于λ/50(λ=632.8nm)。  相似文献   

12.
提出了一种基于非球面固定校正元件的椭球形窗口光学系统设计方法。结合广义科丁顿公式及几何光学原理,推导出非球面校正元件的像散表达式,在此基础上,以消像散和正弦条件作为非球面校正元件像差评价参数,采用最小二乘法拟合出满足消像散及彗差的非球面面形方程。并建立以泽尼克(Zernike)多项式特殊优化函数取代传统的光学系统评价函数,克服了采用传统光学设计方法设计椭球形窗口光学系统时系统评价函数收敛缓慢的问题。成像光学系统设计时通过比对不同材料匹配实现了光学系统的无热化。给出了完整的椭球形窗口光学系统的设计,设计结果表明,系统的调制传递函数在整个扫描视场范围内接近衍射极限。  相似文献   

13.
在检验光路中,采用补偿透镜来补偿口径为φ500mm的非球面透镜的使用波长(λ=1053nm)与检测波长(λ=632.8nm)之间的色差。给出补偿透镜的求解方法,得到非球面透镜的补偿检验光路,并就非球面透镜的检验精度进行分析。通过精度分析可以看出,在此种补偿检验光路下,非球面透镜的透射波前PV不低于0.2λ(λ=632.8nm),可满足元件的精度要求。  相似文献   

14.
为实现地平式离轴扩束光学系统的高精度装调,利用4D干涉仪加装平面镜头配合标准平面镜实现自准直检测,并针对实际使用过程中镜筒需要绕俯仰轴旋转的问题,提出一种动态检测方法。根据实际装调结果,建立空间直角坐标系,利用旋转过程中光斑最大偏离量计算二轴正交误差。装调结果表明,采用自准直检测及动态检测方法,主镜面形精度为0.028 8λ@632.8 nm,系统波像差RMS为0.131λ@632.8 nm,二轴正交误差为2.06″。  相似文献   

15.
杨晓飞  韩昌元 《光学技术》2004,30(5):532-534
通过非球面的零位补偿法,完成了对矩形大口径离轴非球面镜的检测。先用光学设计软件Zemax从理论上分析了在检测中会出现的现象,并结合计算机辅助装调技术,确定在检测过程中相对敏感的自由度,然后控制这些量,使补偿器和非球面的相对关系与理论设计相吻合,在Zygo相位干涉仪上测得最终结果。在λ=632.8nm时,中心圆口径与两个边缘圆口径面形误差RMS分别为0.022λ,0.037λ,0.032λ。检测结果,达到预期目的。  相似文献   

16.
《光学学报》2011,(2):221-225
非球面光学元件检测中,获得准确的面形信息是实现元件确定性制造的关键因素之一.在无像差点法检测离轴非球面中,为了实现反射镜的高精度检测,对其干涉检测结果中的误差信息进行了分析.利用偏心光学系统的波像差分析方法,分析了在非球面检测系统中,被测镜的调整误差对系统波像差的影响,建立了调整误差分离的数学模型.利用该模型对离轴非球...  相似文献   

17.
针对凸非球面大口径、大相对孔径、全口径检验难的问题,提出了一种利用自准校正单透镜检验凸非球面的方法。该方法通过在单透镜的凸面镀半反半透膜构成自准校正透镜,校正非球面的球差,从而实现大口径凸非球面的全口径检验。依据三级像差理论,推导了初始结构参数计算公式,介绍了检验光学系统的设计方法;对口径为240.62 mm、相对孔径为0.48的凸扁球面光学检验系统进行了模拟设计。系统优化后的残余波像差峰谷(PV)值为0.00025λ,均方根(RMS)值为0.0001λ(λ=632.8 nm)。将该方法用于工程项目中口径为287 mm、相对孔径为0.74的凸双曲面反射镜检验中,测得镜面RMS为0.021λ,验证了该方法的可行性。最后对该方法的适用性以及像差校正能力进行分析。研究结果表明:该方法可以实现任意偏心率凸非球面的全口径检验,在大口径、大相对孔径凸非球面全口径检验时具有较大优势。  相似文献   

18.
研制了基于三分区镜的倒立式三视场施密特型望远镜,对其关键技术进行了分析。利用正三棱锥的几何对称性,推导了3个视场的视轴夹角与分区镜面夹角之间的关系式,设计了用于实现多视场观测功能的三分区镜;通过有限元法分析了倒立式施密特望远镜主镜重力形变对像质的影响,阐述了检测光路关键参数对施密特修正镜加工误差的影响程度,采用蒙特卡罗法对该光学系统的杂散光进行了分析。最后对整个光学系统进行了实验检测,检测结果表明:实际研制的三分区镜镜面之间的夹角为133.08°,可同时对相互垂直的3个视场进行观测;该望远镜光学系统的PV=0.614λ,RMS=0.105λ(λ=632.8 nm)。该系统可用于地球空间姿态测量,拓展了施密特望远镜的应用范围。  相似文献   

19.
透射式光学系统中透镜中心偏误差的存在,影响了光学系统的共轴性,从而产生了偏心像差,影响了成像质量.非球面透镜的应用可以减少光学系统的像差,越来越被广泛使用.为了研究非球面透镜和球面透镜的中心偏误差带来的系统偏心像差的差异,提出了一种最佳光轴拟合对光学系统中心偏误差分析的方法.结合塞德尔多项式,利用Zemax软件对系统加...  相似文献   

20.
为校正飞机上双曲率面共形窗口在全扫描视场范围内引入的静态和动态像差,设计了一种静态校正器结构.该校正器由三个含有倾斜和偏心的旋转对称元件组成,且每个元件的表面面形为偶次非球面.校正器相对于共形窗口的位置是固定的,且结构紧凑稳定.基于矢量像差理论,对校正器进行光学设计,并阐述了该校正器的像差校正原理,结果表明:在各扫描视场位置,共形窗口与校正器引入的矢量像散可以相互抵消,使得共形窗口在全扫描视场范围内引入的静态和动态像散均得到校正,整个共形光学系统在可见光波段引入的波前像差均小于1个波长,调制传递函数曲线在50lp/mm处值均大于0.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号