首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 345 毫秒
1.
The localized artificial diffusivity method is investigated in the context of large-eddy simulation of compressible turbulent flows. The performance of different artificial bulk viscosity models are evaluated through detailed results from the evolution of decaying compressible isotropic turbulence with eddy shocklets and supersonic turbulent boundary layer. Effects of subgrid-scale (SGS) models and implicit time-integration scheme/time-step size are also investigated within the framework of the numerical scheme used. The use of a shock sensor along with artificial bulk viscosity significantly improves the scheme for simulating turbulent flows involving shocks while retaining the shock-capturing capability. The proposed combination of Ducros-type sensor with a negative dilatation sensor removes unnecessary bulk viscosity within expansion and weakly compressible turbulence regions without shocks and allows it to localize near the shocks. It also eliminates the need for a wall-damping function for the bulk viscosity while simulating wall-bounded turbulent flows. For the numerical schemes used, better results are obtained without adding an explicit SGS model than with SGS model at moderate Reynolds number. Inclusion of a SGS model in addition to the low-pass filtering and artificial bulk viscosity results in additional damping of the resolved turbulence. However, investigations at higher Reynolds numbers suggest the need for an explicit SGS model. The flow statistics obtained using the second-order implicit time-integration scheme with three sub-iterations closely agrees with the explicit scheme if the maximum Courant–Friedrichs–Lewy is kept near unity.  相似文献   

2.
In this paper, the discontinuous Galerkin (DG) method combined with localized artificial diffusivity is investigated in the context of numerical simulation of broadband compressible turbulent flows with shocks for under-resolved cases. Firstly, the spectral property of the DG method is analyzed using the approximate dispersion relation (ADR) method and compared with typical finite difference methods, which reveals quantitatively that significantly less grid points can be used with DG for comparable numerical error. Then several typical test cases relevant to problems of compressible turbulence are simulated, including one-dimensional shock/entropy wave interaction, two-dimensional decaying isotropic turbulence, and two-dimensional temporal mixing layers. Numerical results indicate that higher numerical accuracy can be achieved on the same number of degrees of freedom with DG than high order finite difference schemes. Furthermore, shocks are also well captured using the localized artificial diffusivity method. The results in this work can provide useful guidance for further applications of DG to direct and large eddy simulation of compressible turbulent flows.  相似文献   

3.
High-order methods that can resolve interactions of flow-disturbances with shock waves are critical for reliable numerical simulation of shock wave and turbulence interaction. Such problems are not well understood due to the limitations of numerical methods. Most of the popular shock-capturing methods are only first-order accurate at the shock and may incur spurious numerical oscillations near the shock. Shock-fitting algorithms have been proposed as an alternative which can achieve uniform high-order accuracy and can avoid possible spurious oscillations incurred in shock-capturing methods by treating shocks as sharp interfaces. We explore two ways for shock-fitting: conventional moving grid set-up and a new fixed grid set-up with front tracking. In the conventional shock-fitting method, a moving grid is fitted to the shock whereas in the newly developed fixed grid set-up the shock front is tracked using Lagrangian points and is free to move across the underlying fixed grid. Different implementations of shock-fitting methods have been published in the literature. However, uniform high-order accuracy of various shock-fitting methods has not been systematically established. In this paper, we carry out a rigorous grid-convergence analysis on different variations of shock-fitting methods with both moving and fixed grids. These shock-fitting methods consist of different combinations of numerical methods for computing flow away from the shock and those for computing the shock movement. Specifically, we consider fifth-order upwind finite-difference scheme and shock-capturing WENO schemes with conventional shock-fitting and show that a fifth-order convergence is indeed achieved for a canonical one-dimensional shock-entropy wave interaction problem. We also show that the method of finding shock velocity from one characteristic relation and Rankine–Hugoniot jump condition performs better than the other methods of computing shock velocities. A high-order front-tracking implementation of shock-fitting is also presented in this paper and nominal rate of convergence is shown. The front-tracking results are validated by comparing to results from the conventional shock-fitting method and a linear-interaction analysis for a two-dimensional shock disturbance interaction problem.  相似文献   

4.
郭元  田奇  梁贤  李新亮 《计算物理》2018,35(4):397-404
为提高有限差分格式的分辨率,利用傅里叶分析对WENO格式进行色散及耗散优化,并给出优化的线性权重.用优化后的WENO格式与保单调格式(MP)进行加权混合,得到新的加权混合WENO格式(H-WENO).通过一维激波管问题、Shu-Osher问题及二维双Mach反射问题及R-T不稳定性问题对格式进行数值测试.结果显示,新格式具有强健的激波捕捉能力和对小尺度波结构的高分辨率,与原WENO格式相比改进明显.  相似文献   

5.
A class of generalized high order finite compact difference schemes is proposed for shock/vortex, shock/boundary layer interaction problems. The finite compact difference scheme takes the region between two shocks as a compact stencil. The high order WENO fluxes on shock stencils are used as the internal boundary fluxes for the compact scheme. A lemma based on the property of smoothness estimators on a 5-points stencil is given to detect the shock position. There is no free parameter introduced to switch the compact scheme and the WENO scheme. Some numerical experiments are given and they demonstrate that the present scheme has low dissipation due to the compact central differencing scheme used in the smooth regions.  相似文献   

6.
根据两介质五方程简化模型的基本假设,发展了适用于任意多种介质的体积分数方程。为了捕捉多介质界面,将HLLC-HLLCM混合型数值通量的计算格式推广应用于二维平面和柱几何的多介质复杂流动问题,在高阶精度的数据重构过程中采用斜率修正型人工压缩方法ACM。通过一维、二维多介质黎曼问题算例测试,结果表明:发展的计算格式能够较好地分辨接触间断和激波,间断附近物理量无振荡;对于添加了初始扰动的激波问题,能够有效抑制激波数值不稳定性;使用二维柱球SOD问题和接触间断型黎曼问题检验计算格式对多介质复杂流动问题的适应性。  相似文献   

7.
In spectral-like resolution-WENO hybrid schemes,if the switch function takes more grid points as discontinuity points,the WENO scheme is often turned on,and the numerical solutions may be too dissipative.Conversely,if the switch function takes less grid points as discontinuity points,the hybrid schemes usually are found to produce oscillatory solutions or just to be unstable.Even if the switch function takes less grid points as discontinuity points,the final hybrid scheme is inclined to be more stable,provided the spectral-like resolution scheme in the hybrid scheme has moderate shock-capturing capability.Following this idea,we propose nonlinear spectral-like schemes named weighted group velocity control(WGVC)schemes.These schemes show not only high-resolution for short waves but also moderate shock capturing capability.Then a new class of hybrid schemes is designed in which the WGVC scheme is used in smooth regions and the WENO scheme is used to capture discontinuities.These hybrid schemes show good resolution for small-scales structures and fine shock-capturing capabilities while the switch function takes less grid points as discontinuity points.The seven-order WGVC-WENO scheme has also been applied successfully to the direct numerical simulation of oblique shock wave-turbulent boundary layer interaction.  相似文献   

8.
The local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection–diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters, which is termed as Runge–Kutta LDG (RKLDG) when TVD Runge–Kutta method is applied for time discretization. It has the advantage of flexibility in handling complicated geometry, h-p adaptivity, and efficiency of parallel implementation and has been used successfully in many applications. However, the limiters used to control spurious oscillations in the presence of strong shocks are less robust than the strategies of essentially non-oscillatory (ENO) and weighted ENO (WENO) finite volume and finite difference methods. In this paper, we investigated RKLDG methods with WENO and Hermite WENO (HWENO) limiters for solving convection–diffusion equations on unstructured meshes, with the goal of obtaining a robust and high order limiting procedure to simultaneously obtain uniform high order accuracy and sharp, non-oscillatory shock transition. Numerical results are provided to illustrate the behavior of these procedures.  相似文献   

9.
The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. (2009) [29] to a class of low dissipative high-order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. More general 1D and 2D reacting flow models and new examples of shock turbulence interactions are provided to demonstrate the advantage of well-balanced schemes. The class of filter schemes developed by Yee et al. (1999) [33], Sjögreen and Yee (2004) [27] and Yee and Sjögreen (2007) [38] consist of two steps, a full time step of spatially high-order non-dissipative base scheme and an adaptive non-linear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand-alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e. choosing a well-balanced base scheme with a well-balanced filter (both with high-order accuracy). A typical class of these schemes shown in this paper is the high-order central difference schemes/predictor–corrector (PC) schemes with a high-order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady-state solutions exactly; it is able to capture small perturbations, e.g. turbulence fluctuations; and it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.  相似文献   

10.
迎风紧致格式求解Hamilton-Jacobi方程   总被引:1,自引:1,他引:0  
基于Hamilton-Jacobi(H-J)方程和双曲型守恒律之间的关系,将三阶和五阶迎风紧致格式推广应用于求解H-J方程,建立了高精度的H-J方程求解方法.给出了一维和二维典型数值算例的计算结果,其中包括一个平面激波作用下的Richtmyer Meshkov界面不稳定性问题.数值试验表明,在解的光滑区域该方法具有高精度,而在导数不连续的不光滑区域也获得了比较好的分辨效果.相比于同阶精度的WENO格式,本方法具有更小的数值耗散,从而有利于多尺度复杂流动的模拟中H-J方程的求解.  相似文献   

11.
Ion-acoustic shock waves and their head-on collision in a dense quantum plasma comprised of electrons, positrons, and ions are studied. The extended Poincaré-Lighthill-Kuo perturbation method is used to derive the Korteweg-de Vries-Burgers equations for shock waves in this plasma. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. The effects of the ratio of positrons to ions unperturbation number density μ, the normalized kinematic viscosity ηi0, and the quantum Bohm potential H on the interaction and structure of the shock waves are investigated. It is found that there are integrally vertical downward movements for both the colliding shocks after their head-on collision, but there are no shifts of the postcollision trajectories (phase shifts). It is also found that these plasma parameters can significantly influence the collision and properties of the colliding shocks. The results may have relevance in dense astrophysical plasmas (such as neutron stars or white dwarfs) as well as in intense laser-solid density plasma experiments.  相似文献   

12.
The artificial bulk viscosity method to numerically capture shocks is investigated for large-eddy simulation (LES). Different variations of this method are tested on a turbulent flow over a cylinder at Reynolds number of 10,000 and free-stream Mach number of 0.85. The artificial bulk viscosity model by Cook and Cabot, which is parameterized by the strain rate magnitude, is found to provide unnecessary bulk viscosity in turbulent regions away from shocks. While developed turbulent structures are found unaffected, this extra bulk viscosity is shown to significantly damp the sound field. An alternative formulation of the model which is parameterized by the rate of dilatation is proposed. This formulation is shown to avoid the unnecessary bulk viscosity and enhance the sound-prediction capability of the model. It was found that standard LES combined with artificial bulk viscosity is a promising approach for simulation of turbulent flows with shocks. The formulation of the model on curvilinear coordinates is presented in the appendix.  相似文献   

13.
A high-order accurate hybrid central-WENO scheme is proposed. The fifth order WENO scheme [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228] is divided into two parts, a central flux part and a numerical dissipation part, and is coupled with a central flux scheme. Two sub-schemes, the WENO scheme and the central flux scheme, are hybridized by means of a weighting function that indicates the local smoothness of the flowfields. The derived hybrid central-WENO scheme is written as a combination of the central flux scheme and the numerical dissipation of the fifth order WENO scheme, which is controlled adaptively by a weighting function. The structure of the proposed hybrid central-WENO scheme is similar to that of the YSD-type filter scheme [H.C. Yee, N.D. Sandham, M.J. Djomehri, Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys. 150 (1999) 199–238]. Therefore, the proposed hybrid scheme has also certain merits that the YSD-type filter scheme has. The accuracy and efficiency of the developed hybrid central-WENO scheme are investigated through numerical experiments on inviscid and viscous problems. Numerical results show that the proposed hybrid central-WENO scheme can resolve flow features extremely well.  相似文献   

14.
胡湘渝 《气体物理》2016,1(3):12-18
采用低耗散WENO(weighted essential non-oscillatory)格式及锐界面方法模拟可压缩Kelvin-Helmholtz不稳定性问题.由于物质界面被描述成一种接触间断, 该方法可精确求解切向速度间断.基于优化模板对原始光滑指标进行正规化后, 得到一种低耗散WENO格式.修正后的方法显著降低了普通流动区域的过衰减问题, 保持了良好的激波捕捉性能, 并可获得与混合格式相当的求解精度.不同于以往求解单一流体或易混界面时, 通过初始设定有限宽度的剪切层或快速数值耗散以抑制高波数模态, 该方法允许高波数扰动的发展.计算结果表明, 高波数扰动展现出与以往理想Kelvin-Helmholtz不稳定性问题数值模拟或线化理论结果不同的特征, 但与有限厚度的剪切层结果相符.   相似文献   

15.
A key idea in finite difference weighted essentially non-oscillatory (WENO) schemes is a combination of lower order fluxes to obtain a higher order approximation. The choice of the weight to each candidate stencil, which is a nonlinear function of the grid values, is crucial to the success of WENO schemes. For the system case, WENO schemes are based on local characteristic decompositions and flux splitting to avoid spurious oscillation. But the cost of computation of nonlinear weights and local characteristic decompositions is very high. In this paper, we investigate hybrid schemes of WENO schemes with high order up-wind linear schemes using different discontinuity indicators and explore the possibility in avoiding the local characteristic decompositions and the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong shocks. The idea is to identify discontinuity by an discontinuity indicator, then reconstruct numerical flux by WENO approximation in discontinuous regions and up-wind linear approximation in smooth regions. These indicators are mainly based on the troubled-cell indicators for discontinuous Galerkin (DG) method which are listed in the paper by Qiu and Shu (J. Qiu, C.-W. Shu, A comparison of troubled-cell indicators for Runge–Kutta discontinuous Galerkin methods using weighted essentially non-oscillatory limiters, SIAM Journal of Scientific Computing 27 (2005) 995–1013). The emphasis of the paper is on comparison of the performance of hybrid scheme using different indicators, with an objective of obtaining efficient and reliable indicators to obtain better performance of hybrid scheme to save computational cost. Detail numerical studies in one- and two-dimensional cases are performed, addressing the issues of efficiency (less CPU time and more accurate numerical solution), non-oscillatory property.  相似文献   

16.
沙莎  陈志华  张焕好  姜孝海 《物理学报》2012,61(6):64702-064702
激波绕过三角楔(Schardin问题)时会产生激波马赫反射与绕射、 三角楔尾涡与涡串等复杂物理现象. 本文利用三阶精度加权基本无振荡(WENO)格式、 结构化矩形网格的自适应加密方法与沉浸边界法对Schardin问题进行了数值模拟. 数值结果清晰地显示了激波与三角楔相互作用, 在楔面发生马赫反射以及在楔角绕射诱导主涡的过程, 并与Schardin等的实验结果及相关数值结果完全符合. 另外, 数值结果还详细反映了先前实验与数值结果没有详细讨论的主涡滑移层上的涡串生成机理, 以及激波与涡串相互作用和产生声波的过程.  相似文献   

17.
Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from $0$ to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax--Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.  相似文献   

18.
激波绕过三角楔(Schardin问题)时会产生激波马赫反射与绕射、 三角楔尾涡与涡串等复杂物理现象. 本文利用三阶精度加权基本无振荡(WENO)格式、 结构化矩形网格的自适应加密方法与沉浸边界法对Schardin问题进行了数值模拟. 数值结果清晰地显示了激波与三角楔相互作用, 在楔面发生马赫反射以及在楔角绕射诱导主涡的过程, 并与Schardin等的实验结果及相关数值结果完全符合. 另外, 数值结果还详细反映了先前实验与数值结果没有详细讨论的主涡滑移层上的涡串生成机理, 以及激波与涡串相互作用和产生声波的  相似文献   

19.
In this paper, the behavior of shock-capturing methods in Lagrangian coordinate is investigated. The relation between viscous shock and inviscid one is analyzed quantitatively, and the procedure of a viscous shock formation and propagation with a jump type initial data is described. In general, a viscous shock profile and a discontinuous one include different energy and momentum, and these discrepancies result in the generation of waves in all families when a single wave Riemann problem (shock or rarefaction) is solved. Employing this method, some anomalous behavior, such as, viscous shock interaction, shock passing through ununiform grids, postshock oscillations and lower density phenomenon is explained well. Using some classical schemes to solve the inviscid flow in Lagrangian coordinate may be not adequate enough to correctly describe flow motion in the discretized space. Partial discrepancies between von Neumann artificial viscosity method and Godunov method are exhibited. Some reviews are given to those methods which can ameliorate even eliminate entropy errors. A hybrid scheme based on the understanding to the behavior of viscous solution is proposed to suppress the overheating error.  相似文献   

20.
The contribution of higher-order nonlinearity and dissipation to nonlinear ion acoustic shock waves (IASWs) is investigated by using the reductive perturbation technique in dense electron-ion plasma. The model consists of degenerate electrons (being either ultrarelativistic or nonrelativistic) and nonrelativistic ion fluid. A nonlinear Burger equation and a linear inhomogeneous Burger-type equation are derived. The inclusion of the higher-order corrections results in creating new shock wave structures, humped IASWs. It is found that the kinematic viscosity and the equilibrium ion number density play important roles in the basic features of the produced IA shocks and the associated electric fields. These findings are devoted to explaining the observed waves propagating in the outer periphery of compact dense stars which mostly consists of hydrogen and degenerate electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号