首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The mechanism of the sorption of U on TiO2 · x H2O is investigated in absence and in presence of carbonate as function of pH. Speciation of U in solution and the state of the surface of TiO2 · x H2O are taken into account. In the experiments the mole fractions of the U species in presence of carbonate are the same as in seawater. Below pH 5 the sorption of U can be described in absence and in presence of carbonate by ion exchange of UO 2 2+ or alternatively by sorption of UO2OH+, because hydrolysis and sorption are occurring simultaneously. Above pH 5 in absence of carbonate, first pH-independent sorption of (UO2)3(OH) 7 and then (above the isoelectric point of TiO2 · x H2O) pH-dependent sorption of (UO2)3(OH) 7 are observed. In the same pH range, but in presence of carbonate, two species of U are dominating in solution, first UO2CO3OH and then UO2(CO3) 3 4– · UO2CO3OH is not sorbed in measurable amounts which causes a drastic decrease of the sorption ratio. UO2(CO3) 3 4– , which begins to dominate above pH 6 (depending on the carbonate concentration), is sorbed either by formation of TiOUO2 bonds or (at carbonate concentrations >10–2 mol/l) via carbonate bridges.
Sorption von Uranylionen an wasserhaltigem Titandioxid
  相似文献   

2.
Simple and versatile routes to the functionalization of uranyl‐derived UV–oxo groups are presented. The oxo‐lithiated, binuclear uranium(V)–oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepared by the direct combination of the uranyl(VI) silylamide “ate” complex [Li(py)2][(OUO)(N”)3] (N”=N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl (VI) Pacman complex [UO2(py)(H2L)], respectively. These oxo‐metalated complexes display distinct U? O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo–stannylated complexes [{(R3Sn)OUO}2(L)] (R=nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium–oxo‐group exchange occurred in reactions with [TiCl(OiPr)3] to form U‐O? C bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo‐functionalised by Group 14 elements.  相似文献   

3.
The hydrothermal reactions of uranyl nitrate and metallic copper with aromatic polycarboxylic acids gave rise to the formation of five heterometallic UO22+? Cu2+ coordination polymers: (UO2)Cu(H2O)2(1,2‐bdc)2 ( 1 ; 1,2‐bdc=phthalate), (UO2)Cu(H2O)2(btec) ? 4 H2O ( 2 ) and (UO2)Cu(btec) ( 2′ ; btec=pyromellitate), (UO2)2Cu(H2O)4(mel) ( 3 ; mel=mellitate), and (UO2)2O(OH)2Cu(H2O)2(1,3‐bdc) ? H2O ( 4 ; 1,3‐bdc=isophthlalate). Single‐crystal X‐ray diffraction (XRD) analysis of compound 1 revealed 2D layers of chains of UO8 and CuO4(H2O)2 units that were connected through the phthalate ligands. In compound 2 , these sheets were connected to each other through the two additional carboxylate arms of the pyromellitate, thus resulting in a 3D open‐framework with 1D channels that trapped water molecules. Upon heating, free and bonded water species (from Cu? OH2) were evacuated from the structure. This thermal transition was followed by in situ XRD and IR spectroscopy. Heating induced a solid‐state topotactic transformation with the formation of a new set of Cu? O interactions in the crystalline anhydrous structure ( 2′ ), in order to keep the square‐planar environment around the copper centers. The structure of compound 3 was built up from trinuclear motifs, in which one copper center, CuO4(OH2)2, was linked to two uranium units, UO5(H2O)2. The assembly of this trimer, “U2Cu”, with the mellitate generated a 3D network. Complex 4 contained a tetranuclear uranyl core of UO5(OH)2 and UO6(OH) units that were linked to two copper centers, CuO(OH)2(H2O)2, which were then connected to each other through isophthalate ligands and U?O? Cu interactions to create a 3D structure. The common structural feature of these different compounds is a bridging oxo group of U?O? Cu type, which is reflected by apical Cu? O distances in the range 2.350(3)–2.745(5) Å. In the case of a shorter Cu? O distance, a slight lengthening of the uranyl bond (U?O) is observed (e.g., 1.805(3) Å in complex 4 ).  相似文献   

4.
The crystal structure of the Rb analogue of grimselite, rubidium sodium uranyl tricarbonate hydrate, Rb6Na2[(UO2)(CO3)3]2(H2O), consists of a uranyl hexagonal bipyramid that shares three non‐adjacent equatorial edges with carbonate triangles, resulting in a uranyl tricarbonate cluster of composition [(UO2)(CO3)3)]. These uranyl tricarbonate clusters form layers perpendicular to [001] and are interconnected by NaO8 polyhedra. The title compound is isostructural with grimselite, with a reduced occupancy of the H2O site (25% versus 50% in grimselite).  相似文献   

5.
Surface frustrated Lewis pairs (SFLPs) have been implicated in the gas‐phase heterogeneous (photo)catalytic hydrogenation of CO2 to CO and CH3OH by In2O3?x(OH)y. A key step in the reaction pathway is envisioned to be the heterolysis of H2 on a proximal Lewis acid–Lewis base pair, the SFLP, the chemistry of which is described as In???In‐OH + H2 → In‐OH2+???In‐H?. The product of the heterolysis, thought to be a protonated hydroxide Lewis base In‐OH2+ and a hydride coordinated Lewis acid In‐H?, can react with CO2 to form either CO or CH3OH. While the experimental and theoretical evidence is compelling for heterolysis of H2 on the SFLP, all conclusions derive from indirect proof, and direct observation remains lacking. Unexpectedly, we have discovered rhombohedral In2O3?x(OH)y can enable dissociation of H2 at room temperature, which allows its direct observation by several analytical techniques. The collected analytical results lean towards the heterolysis rather than the homolysis reaction pathway.  相似文献   

6.
The title compound was obtained by reacting UO2 powder in 2 M K2CO3 with hydrogen peroxide. The compound contains individual [U(CO3)2O2(O2)]4− ions, which are linked via an extended network of K atoms and hydrogen bonding. The U atom is coordinated to two trans‐axial O atoms and six O atoms in the equatorial plane, forming distorted hexagonal bipyramids. The carbonate ligands are bound to the U center in a bidentate manner, with U—O bond distances ranging from 2.438 (5) to 2.488 (5) Å. The peroxo group forms a three‐membered ring with the U atom, with U—O bond distances of 2.256 (6) and 2.240 (6) Å. The U=O bond distances of 1.806 (5) and 1.817 (5) Å, and an O—U—O angle of 175.3 (3)° are characteristic of the linear uranyl(VI) unit.  相似文献   

7.
To examine the interaction of uranyl with nitrogen containing groups of humic substances, the model complexes [UO2(H2O)4LN]2+, LN = NH2CH3, N(CH3)3, and NC5H5 in aqueous solution were studied computationally with an all‐electron relativistic density functional method. Results are compared with the corresponding penta‐aqua complex of uranyl. Although pyridine coordinates with about the same strength as L = H2O, methylamine binds ~10 kJ mol?1 stronger and trimethylamine ~40 kJ mol?1 weaker than a fifth aqua ligand. Yet, each of these ligands LN donates about the same amount of charge to uranyl as L = H2O. U? N bonds are ~10 pm longer than the U? O bonds of the aqua ligands. From the present model results, one does not expect that, when compared with carboxyl groups, monodentate N‐containing functional groups contribute significantly to uranyl complexation by humic substances. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

8.
Summary Solid complexes of 3-acetyl-1,5-diaryl and 3-cyano-1,5-diaryl formazans were prepared and characterized by elemental analysis, IR, NMR, TGA and DTA analyses. Based on these studies, the suggested general formula for the complexes is [M(HL) m (OH) n or (NO 3 or Cl) x ·(H2O) y or (C2H5OH orDMSO) z , where HL=formazanM=Ce3+, Th4+, and UO 2 2+ ,m=1–2,n=0–3,x=0–3,y=0–4 andz=0–3. The metal ions are expected to have coordination numbers 6–8.
Strukturuntersuchungen an 3-Acetyl-1,5-diaryl- und 3-Cyan-1,5-diaryl-formazan-Chelaten mit Cer(III), Thorium(IV) und Uran(VI)
Zusammenfassung Die hergestellten Chelate wurden mittels Elementaranalyse, IR, NMR, TGA und DTA charakterisiert. Darauf basierend wird die generelle Formel [M(HL) m (OH) n bzw. (NO 3 oder Cl) x ·(H2O) y oder (C2H5OH bzw.DMSO) z ] vorgeschlagen, wobei HL=Formazan,M=Ce3+, Th4+ oder UO 2 2+ ,m=1–2,n=0–3,x=0–3,y=0–4 undz=0–3. Die Metallionen haben Koordinationszahlen von 6–8.
  相似文献   

9.
A study was carried out to understand the sorption of uranium (U) onto soil surface and identify the species of U on soil surface using X-Ray Photoelectron Spectroscopy (XPS). For the study soil was amended with uranyl nitrate and surface speciation study was carried out by investigating the energy region for U in spectrum. Analysis of spectrum revealed that U is present in U(VI) state. Deconvolution of XPS spectrum of U(VI) sorbed on soil surface revealed that U(VI) species such as, UO2 2+ and (UO2)x(OH) y (2x?y)+ form complex with silanol, aluminol and goethite sites. The possible surface complexation is: ≡Al(OH)2UO2 2+, ≡SiO2UO2, ≡SiO2(UO2)3(OH)5 and ≡Fe(OH)2UO2.  相似文献   

10.
Rhenium(V) complexes of 1H-benzimidazole (L), isolated from acidic media: (HL)2[ReOX5]·(H2O) n and [ReOL x X y (H2O) z ](H2O) n (HL and L are protonated and deprotonated forms of benzimidazole; X = Cl-, Br-) were studied by means of IR spectroscopy, 1H NMR spectroscopy, and thermal analysis.  相似文献   

11.
A feasibility and basic study to find a possibility to develop such a process for recovering U alone from spent fuel by using the methods of an oxidative leaching and a precipitation of U in high alkaline carbonate media was newly suggested with the characteristics of a highly enhanced proliferation-resistance and more environmental friendliness. This study has focused on the examination of an oxidative leaching of uranium from SIMFUEL powders contained 16 elements (U, Ce, Gd, La, Nd, Pr, Sm, Eu, Y, Mo, Pd, Ru, Zr, Ba, Sr, and Te) using a Na2CO3 solution with hydrogen peroxide. U3O8 was dissolved more rapidly than UO2 in a carbonate solution. However, in the presence of H2O2, we can find out that the leaching rates of the reduced SIMFUEL powder are faster than the oxidized SIMFUEL powder. In carbonate solutions with hydrogen peroxide, uranium oxides were dissolved in the form of uranyl peroxo-carbonato complexes. UO2(O2) x (CO3) y 2−2x−2y , where x/y has 1/2, 2/1.  相似文献   

12.
The coordination polymer {[UO2(NO3)2(C11H20N4O2)] · 2H2O} n (I) was obtained and examined by X-ray diffraction. The crystals are monoclinic, space group C2/c; a = 23.1386(13), b = 5.41575(15), c = 19.7769(11) Å, β = 125.285(8)°, V = 2023.01(17) Å3, ρcalcd = 2.20 g/cm3, Z = 4. The U atom occupies a special position in the center of inversion. Its coordination polyhedron is a distorted hexagonal bipyramid with axial oxo ligands. In the equatorial plane, the U(1) atom is coordinated by four O atoms of two bidentate nitrate anions and two O atoms of two carbonyl groups of organic spirocarbone (Sk) molecules, which are related by the symmetry operation (0.5 ? x, 0.5 ? y, ?z). In the crystal, polymer chains are parallel to the direction (101). Water molecules are hydrogen-bonded to the N(1) atom of ligand Sk; in addition, they are linked together by the intermolecular hydrogen bonds O(6)-H(6d)…O(6)i(i1/2 ? x, ?1/2 + y, 1/2 ? z); H…O 2.11 Å angle O-H…O 160°) and to the nitrate anions by the hydrogen bonds O(6)-H(6e)…O(3)i; H…O 2.29 Å; the angle O-H…O 149°). In the crystal, hydrogen-bonded water molecules form chains along the axis y that are perpendicular to the coordination polymers. To verify the purity of complex I, the Rietveld refinement of its X-ray powder diffraction pattern was performed. At room temperature, the unit cell parameters are a = 23.2965(6), b = 5.51225(15), c = 19.8588(6) Å, β = 125.6063(17)°, V = 2073.40(10) Å3.  相似文献   

13.
The CaCl2-(NH4)2HPO4-NH4HCO3-(C6H11NO4) n -H2O system at 25°C has been investigated by the solubility (Tananaev’s residual concentration) method and pH measurements. Coprecipitation conditions have been determined for nanocrystalline type A and B calcium carbonate apatites. Type A: Ca10(PO4)6(CO3) x (OH)2 − 2x · yC6H11NO4 · zH2O (x = 0.2, 0.5, 1.0; y = 0.1, 0.3, 0.5; z = 5.3−6.7); type B: Ca10[(PO4)5.7(CO3)0.45]CO3 · 0.3C6H11NO4 · 9H2O, and Ca10[(PO4)5.55(CO3)0.675]CO3 · 0.3C6H11NO4 · 9.2H2O. The solid phases have been characterized by chemical analysis, X-ray diffraction, thermogravimetric analysis, and IR spectroscopy.  相似文献   

14.
We report two new 3D structures, [Zn3(bpdc)3(2,2′‐dmbpy)] (DMF)x(H2O)y ( 1 ) and [Zn3(bpdc)3(3,3′‐dmbpy)]?(DMF)4(H2O)0.5 ( 2 ), by methyl functionalization of the pillar ligand in [Zn3(bpdc)3(bpy)] (DMF)4?(H2O) ( 3 ) (bpdc=biphenyl‐4,4′‐dicarboxylic acid; z,z′‐dmbpy=z,z′‐dimethyl‐4,4′‐bipyridine; bpy=4,4′‐bipyridine). Single‐crystal X‐ray diffraction analysis indicates that 2 is isostructural to 3 , and the power X‐ray diffraction (PXRD) study shows a very similar framework of 1 to 2 and 3 . Both 1 and 2 are 3D porous structures made of Zn3(COO)6 secondary building units (SBUs) and 2,2′‐ or 3,3′‐dmbpy as pillar ligand. Thermogravimetric analysis (TGA) and PXRD studies reveal high thermal and water stability for both compounds. Gas‐adsorption studies show that the reduction of surface area and pore volume by introducing a methyl group to the bpy ligand leads to a decrease in H2 uptake for both compounds. However, CO2 adsorption experiments with 1′ (guest‐free 1 ) indicate significant enhancement in CO2 uptake, whereas for 2′ (guest‐free 2 ) the adsorbed amount is decreased. These results suggest that there are two opposing and competitive effects brought on by methyl functionalization: the enhancement due to increased isosteric heats of CO2 adsorption (Qst), and the detraction due to the reduction of surface area and pore volume. For 1′ , the enhancement effect dominates, which leads to a significantly higher uptake of CO2 than its parent compound 3′ (guest‐free 3 ). For 2′ , the detraction effect predominates, thereby resulting in reduced CO2 uptake relative to its parent structure 3′ . IR and Raman spectroscopic studies also present evidence for strong interaction between CO2 and methyl‐functionalized π moieties. Furthermore, all compounds exhibit high separation capability for CO2 over other small gases including CH4, CO, N2, and O2.  相似文献   

15.
From the reaction between Zn(II), Cd(II) and Hg(II) with 5-methyl-1-(2′-pyridyl)pyrazole-3-carboxamide (MP y P z CA) in ethanol, the complexes [Zn(MP y P z CA)2(NO3)]+ [(NO3)0.60(ClO4)0.40]?·H2O, Cd(MP y P z CA)2Cl2 and Hg(MP y P z CA)(SCN)2 were obtained. These compounds have been characterized by IR and CHN analyses. The structure of [Zn(MP y P z CA)2NO3]+[(NO3)0.60(ClO4)0.40]?·H2O has been solved by X-ray crystallography. The coordination environment around the Zn(II) may be described as a trigonal bipyramid in which the ligands are both bidentate, but coordinated differently. The coordination sphere is completed with the oxygen atom of a nitrate anion as a unidentate ligand.  相似文献   

16.
The title compound, [UO2(C33H38N2O2)2](CF3SO3)2·2C5H5N, has been obtained by reaction of UIV tri­fluoro­methane­sulfonate with ptert‐butyl­tetrahomodioxacalix­[4]­arene in pyridine. The uranyl ion lies on an inversion centre and is bound to two O atoms from each diphenoxide ligand, which gives the usual square‐planar equatorial environment. The zwitterionic diphenoxide species results from nucleophilic attack by pyridine on the benzylic ether C atoms of the homooxacalixarene, assisted by initial U coordination to the ether groups, with subsequent metal oxidation giving the uranyl moiety.  相似文献   

17.
Two examples of heterometallic–organic frameworks (HMOFs) composed of dicarboxyl‐functionalized FeIII‐salen complexes and d10 metals (Zn, Cd), [Zn2(Fe‐L)22‐O)(H2O)2] ? 4 DMF ? 4 H2O ( 1 ) and [Cd2(Fe‐L)22‐O)(H2O)2] ? 2 DMF ? H2O ( 2 ) (H4L=1,2‐cyclohexanediamino‐N,N′‐bis(3‐methyl‐5‐carboxysalicylidene), have been synthesized and structurally characterized. In 1 and 2 , each square‐pyramidal FeIII atom is embedded in the [N2O2] pocket of an L4? anion, and these units are further bridged by a μ2‐O anion to give an (Fe‐L)22‐O) dimer. The two carboxylate groups of each L4? anion bridge ZnII or CdII atoms to afford a 3D porous HMOF. The gas sorption and magnetic properties of 1 and 2 have been studied. Remarkably, 1 and 2 show activity for the photocatalytic degradation of 2‐chlorophenol (2‐CP) under visible‐light irradiation, which, to the best of our knowledge, is the first time that this has been observed for FeIII‐salen‐based HMOFs.  相似文献   

18.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

19.
New heteronuclear complexes containing oxorhenium(V), Cu(II), Ni(II), Fe(III), UO2(VI) and Th(IV) ions were prepared by the reaction of the complex ligand, [ReO(H4L)Cl]Cl2, where H4L = 8,17-dimethyl-6,15-dioxo-5,7,14,16-tetrahydrodibenzo[a,h][14]annulene-2,11-dicarboxylic acid, with the previous transition and actinide salts. Three heteronuclear Cu(II) complexes were isolated depending on the ratio of [ReO(H4L)Cl]Cl2?:?Cu(II) ion. When the ratios were 1?:?0.5, 1?:?1 and 1?:?2, the heteronuclear complexes {[ReO(H3L)Cl]2CuCl2(OH2)2}SO4 · H2O (I), [ReO(H3L)Cl2Cu(OH2)2(SO4)] (II) and {ReO(H2L)Cl[Cu(OH2)3 SO4]2} (III) were obtained, respectively. Heteronuclear complexes of the other metal cations were obtained by mixing [ReO(H4L)Cl]Cl2 with the metal salt in the ratio 1?:?1 to obtain the heteronuclear complexes [ReO(H3L)Cl2Ni(OH2)2](NO3)2 (IV), [ReO(H3L)Cl3Fe(OH2)3](NO3)2 (V), [ReO(H3L)ClUO2(NO3)2 (OH2)]Cl (VI) and [ReO(H3L)Cl3Th(NO3)2(OH2)]NO3 · 2H2O (VII). The complex ligand coordinates with the heterometal ion via the carboxylate group, and the infrared bands νas COO and νs COO indicate that the carboxylate acts as a unidentate ligand to the heterometal cations. Cu(II) and Fe(III) cations in the heteronuclear complexes have octahedral geometry, while Ni(II) is square planar. Thermal studies explored the possibility of obtaining new heteronuclear complexes pyrolytically in the solid state from the corresponding mother complexes. The structures of the complexes were elucidated by conductance, IR and electronic spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy.  相似文献   

20.
Unstable 2-hydroxpropene was prepared by retro-Diels-Alder decomposition of 5-exo-methyl-5-norbornenol at 800°C/2 × 10?6 Torr. The ionization energy of 2-hydroxypropene was measured as 8.67±0.05 eV. Formation of [C2H3O]+ and [CH3]+ ions originating from different parts of the parent ion was examined by means of 13C and deuterium labelling. Threshold-energy [H2C?C(OH)? CH3] ions decompose to CH3CO++CH3˙ with appearance energy AE(CH3CO+) = 11.03 ± 0.03 eV. Higher energy ions also form CH2?C?OH+ + CH3 with appearance energy AE(CH2?C?OH+) = 12.2–12.3 eV. The fragmentation competes with hydrogen migration between C(1) and C(3) in the parent ion. [C2H3O]+ ions containing the original methyl group and [CH3]+ ions incorporating the former methylene and the hydroxyl hydrogen atom are formed preferentially, compared with their corresponding counterparts. This behaviour is due to rate-determining isomerization [H2C?C(OH)? CH3] →[CH3COCH3], followed by asymmetrical fragmentation of the latter ions. Effects of internal energy and isotope substitution are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号